Chem 332: Problem Set \#2

Due in class: Friday, Jan. 25th
(1) In normalizing wavefunctions, the integration is over all space in which the wave function is defined. Normalize the following wavefunctions.
(a) $\psi=e^{-x^{2} / 2}$ over the range $-\infty \leq x \leq+\infty$
(b) $\psi=\sin \left(\frac{n \pi}{a} x\right) \sin \left(\frac{m \pi}{b} y\right)$ over the range $0 \leq x \leq a$ and $0 \leq y \leq b$, where a and b are constants and n and m are integers.
(2) A quantum mechanical particle confined to move in one dimension between $x=0$ and $x=L$ is found to have a state described by the wavefunction $\psi(x)=A \sin \left(\frac{2 \pi}{L} x\right)$.
(a) Determine the constant A such that the wavefunction is normalized.
(b) Using the result of part (a), find the probability that the particle will be found between $x=0$ and $x=L / 3$.
(3) Determine in each of the following cases if the function in the first column is an eigenfunction of the operator in the 2 nd column. If so, state what the eigenvalue is.

Function	Operator
$\cos \theta$	$\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d}{d \theta}\right)$
$e^{-i\left(2 i x^{2}\right)}$	$\frac{d^{2}}{d x^{2}}+16 x^{2}$
$\cos x \sin x$	$\frac{d^{2}}{d x^{2}}-2$

(4) Using Euler's relation, $e^{ \pm i \theta}=\cos \theta \pm i \sin \theta$,
(a) Verify $\sin \theta=\frac{1}{2 i}\left(e^{i \theta}-e^{-i \theta}\right)$ and $\cos \theta=\frac{1}{2}\left(e^{i \theta}+e^{-i \theta}\right)$
(b) Using the expression for $\cos \theta$ in part (a), show that $\frac{d(\cos \theta)}{d \theta}=-\sin \theta$.
(5) In classical mechanics the angular momentum vector \vec{L} is defined by $\vec{L}=\vec{r} \times \vec{p}$. Determine the x component of \vec{L} in terms of the components of \vec{r} and \vec{p}, i.e., $(x, y$, $z)$ and (p_{x}, p_{y}, p_{z}). Now apply the Schrödinger prescription to show that the quantum mechanical operator for L_{x} is $\hat{L}_{x}=-i \hbar\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right)$.
(6) Show that the linear combination $\hat{B}+i \hat{C}$ is not hermitian if \hat{B} and \hat{C} are hermitian operators.

