Chem 531: Problem Set \#2
Due in class: Thurs, Sept. 14th
(1) The heat capacities of a gas are often represented by expressions such as:

$$
\bar{C}_{P}=\alpha+\beta T+\gamma T^{2}+\delta T^{3}
$$

For $\mathrm{N}_{2}, \alpha=28.883 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, \beta=-1.57 \times 10^{-3} \mathrm{~J} \mathrm{~K}^{-2} \mathrm{~mol}^{-1}, \gamma=0.808 \times 10^{-5} \mathrm{~J} \mathrm{~K}^{-3} \mathrm{~mol}^{-1}$, and $\delta=-2.871 \times 10^{-9} \mathrm{~J} \mathrm{~K}^{-4} \mathrm{~mol}^{-1}$. How much heat is required to heat a mole of N_{2} from 200 to 1000 K at a constant pressure of 1 bar?

$$
\begin{aligned}
q_{p} & =n \int \bar{C}_{p} d T=n \int_{T_{r}}^{T_{f}} \bar{C}_{p} d T \\
& =n \int_{T_{n}}^{T_{f}}\left(\alpha+\beta T+\gamma T^{2}+\delta T^{3}\right) d T=n\left[\alpha T+\frac{1}{2} \beta T^{2}+\frac{1}{3} \gamma T^{3}+\frac{1}{4} \delta T^{4}\right]_{r} \\
& =n\left[\alpha \Delta T+\frac{1}{2} \rho\left(T_{f}^{2}-T_{n}^{2}\right)+\frac{1}{3} \gamma\left(T_{f}^{3}-T_{n}^{3}\right)+\frac{1}{4} \delta\left(T_{f}^{4}-T_{n}^{4}\right)\right]_{r} \\
& \text { for } n=1.0 \mathrm{~mol}, T_{n}=200 K, T_{f}=1000 \mathrm{kc} \\
q p & =24308 \mathrm{~J}=24.3 \mathrm{~kJ}
\end{aligned}
$$

(2) Compressing the system represented in the figure along the adiabatic path $\mathrm{a} \rightarrow \mathrm{c}$ requires 1000 J of work. Compressing the system along the isothermal line $\mathrm{b} \rightarrow \mathrm{c}$ requires 1500 J of work but 600 J of heat flows out of the system. Fill in the table below, paying close attention to signs.

Process	\mathbf{w}	\mathbf{q}	$\mathbf{\Delta}$
(1)			
(2 $\rightarrow \mathbf{b}$	0	100	100
(3)	$\mathbf{b} \rightarrow \mathbf{c}$	1500	-600
$\mathbf{c} \rightarrow \mathbf{a}$	-1000	0	-1000
cycle aba	500	-500	0

(1) Isochoric, so $\omega=0$ since $d \omega=-P_{\text {ext }} d V Q d V=0$
(2) ω \& q are as stated m problem $\Delta u=q+\omega$ (3) adiabatici, so $g=0 ; \omega$ is opposite as stated
(4) $\Delta u=0$ since it's a state function. This gives the result for Δu in (1) since (1) $+(2)+$ (3) $=0$
(3)
(a) Show that

$$
\left(\frac{\partial C_{V}}{\partial V}\right)_{T}=T\left(\frac{\partial^{2} P}{\partial T^{2}}\right)_{V} \quad \text { noting that }\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P
$$

(b) Evaluate this for an ideal gas.
(a) $\quad C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}$, so $\left(\frac{\partial C_{V}}{\partial V}\right)_{T}=\left[\frac{\partial}{\partial V}\left(\frac{\partial U}{\partial T}\right)_{V}\right]_{T}$
but U is a state function ($d U$ is an exact differential)
so its mixed $2 n d$ partial derivatives are equal:

$$
\begin{aligned}
& {\left[\frac{\partial}{\partial V}\left(\frac{\partial U}{\partial T}\right)_{V}\right]_{T}=\left[\frac{\partial}{\partial T}\left(\frac{\partial U}{\partial V}\right)_{T}\right]_{V} } \\
& \operatorname{fn}\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P \\
& {\left[\frac{\partial}{\delta T}\left(\frac{\partial U}{\partial V}\right)_{T}\right]_{V} }=T\left(\frac{\partial^{2} P}{\partial T^{2}}\right)_{V}+\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial P}{\partial T}\right)_{V}-\left(\frac{\partial P}{\partial T}\right)_{V} \\
&=T\left(\frac{\partial^{2} P}{\partial T^{2}}\right)_{V}
\end{aligned}
$$

(b) $P=\frac{n R T}{V} \quad\left(\frac{\partial P}{\partial T}\right)_{V}=\frac{n R}{V} \quad\left(\frac{\partial^{2 P}}{\partial T^{2}}\right)_{V}=0$
hence $\left(\frac{\partial C_{v}}{\partial v}\right)_{T}=0$ fin on ideal gas
(4) The standard enthalpy of dissociation $\Delta H_{\text {diss }}^{o}$ for hypobromous acid, i.e., ΔH_{r}^{o}, for the reaction $\mathrm{HOBr}(\mathrm{g}) \rightarrow \mathrm{OH}(\mathrm{g})+\mathrm{Br}(\mathrm{g})$, has been measured to be $206.8 \mathrm{~kJ} / \mathrm{mol}$ at $25^{\circ} \mathrm{C}$.
(a) Determine the standard internal energy change ΔU_{r}^{o} for this reaction at $25^{\circ} \mathrm{C}$.
(b) Determine the standard enthalpy of formation, ΔH_{f}^{o}, of HOBr at $25^{\circ} \mathrm{C}$ [Note: you'll need to look up appropriate thermodynamic data for $\mathrm{OH}(\mathrm{g})$ and $\mathrm{Br}(\mathrm{g})$. See: https://atct.anl.gov]
(a) $H=U+P V$ hence $\Delta U_{r}^{\circ}=\Delta H_{r}^{\circ}-\Delta(P V)$

$$
\begin{aligned}
& \Delta(P V)=\Delta(n R T)=\Delta n_{g a s} R T \\
& \Delta U_{r}^{0}=206.8 \mathrm{~kJ}-(2-1)(8.3145)(298.15) / 1000 \\
&= 204.3 \mathrm{~kJ}
\end{aligned}
$$

(b) from the ATCT:

$$
\begin{aligned}
\Delta H_{f}^{\circ}(\mathrm{OH}(\mathrm{~s})) \text { at } 298 \mathrm{~K} & =37.518 \mathrm{~kJ} / \mathrm{mol} \\
\Delta H_{f}^{\circ}(\mathrm{Br}(\mathrm{~s})) \text { at } 298 \mathrm{~K} & =11.848 \mathrm{~kJ} / \mathrm{mol} \\
\Delta H_{\text {diss }} & =\Delta H_{f}^{\circ}(O H(\mathrm{~s}))+\Delta H_{f}^{\circ}(\mathrm{Br}(\mathrm{~s}))-\Delta H_{f}^{\circ}\left(\mathrm{HOBr}_{(\mathrm{s})}\right) \\
\Delta H_{f}^{\circ}(H O B r) & =37.518+111.848-206.8 \\
& =-57.4 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

(5) The standard enthalpy of combustion for liquid benzene at $25^{\circ} \mathrm{C}$ is $-3268 \mathrm{~kJ} / \mathrm{mol}$. Determine the enthalpy of combustion of gaseous benzene at $110^{\circ} \mathrm{C}$. Please note your sources for the required thermodynamic data.
Watt: $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})+\frac{15}{2} \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\Delta \mathrm{H}^{\circ}\left(110^{\circ} \mathrm{C}\right)} 6 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l}), 25^{\circ} \mathrm{C}+\frac{15}{2} \mathrm{O}_{2}(\mathrm{~s}) \longrightarrow 6 \mathrm{CO}_{2}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(e)
$$

data from NIST Web Book
Benzene: $\bar{C}_{p, g}=104$ J/mol. K at 368 K (avg of $80^{\circ} \mathrm{C} \mathrm{ad} 110^{\circ} \mathrm{C}$)
$\bar{C}_{\text {pl }}=140 \mathrm{~J} / \mathrm{mal.k}$ at $322 \mathrm{~K}\left(\sim \operatorname{avg} 480 \times 25^{\circ} \mathrm{C}\right)$
$\Delta H_{\text {up }}=33.9 \mathrm{~kJ} / \mathrm{mul}$ at $353.3 \mathrm{~K} \sim 80^{\circ} \mathrm{C}$
other date from Noggle, and ed. Physical Chemistry at 298.15 K - ignoring T dependence since that is too much fur this problem. my apologies for not specifying this in the problem

$$
\begin{aligned}
& \mathrm{O}_{2}(\mathrm{~g}): \bar{C}_{p}=29.355 \mathrm{~J} / \mathrm{mol} \mathrm{k} \\
& \mathrm{CO}_{2}(\mathrm{~s}) \quad \bar{C}_{p}=371 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K} \\
& \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \quad \bar{C}_{p}=33.577 \mathrm{~J} / \mathrm{mol} \mathrm{~K} \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \overline{\mathrm{C}_{p}}=75.291 \mathrm{~J} / \mathrm{mol} \mathrm{~K} \\
& \Delta \mathrm{H}_{\text {opp }}\left(\mathrm{H}_{2} \mathrm{O}, 373 \mathrm{~K}\right)=40.66 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta H_{r}\left(110^{\circ} C\right)=\int_{110}^{80} \bar{c}_{p_{1} \delta}\left(c_{6} H_{6}\right) d T-\Delta H_{i v g}^{0}\left(c_{B} H_{6}\right)+\int_{80}^{25} \bar{c}_{p_{1}} e\left(c_{c} H_{0}\right) d T \\
& +\frac{5}{2} \int_{110}^{25} \bar{C}_{P, g}\left(\mathrm{O}_{2}\right) d T+\Delta H_{r}^{\circ}\left(25^{\circ} \mathrm{C}\right) \\
& +6 \int_{25}^{110} \bar{C}_{p}\left(\mathrm{CO}_{2}\right) d T+3 \int_{25}^{100} \bar{C}_{p_{1}}\left(H_{2} \mathrm{O}\right)^{d T}+3 \Delta H_{\text {vap }}^{0}\left(\mathrm{H}_{2} \mathrm{O}\right) \\
& +3 \int_{100}^{110} \tilde{C}_{P_{i g}}\left(H_{2} O(\mathrm{~g})\right) d T \\
& =104(80-110)-33.9 \times 10^{3}+140(25-80) \\
& +7.5(29.355)(25-110)+-3268 \times 10^{3} \\
& +6(37.11)(110-25)+3(75.291)(100-25)+3\left(40.66 \times 10^{3}\right) \\
& +3(33.577)(110-100) \\
& =-3172 \mathrm{~kJ} / \mathrm{ml} \sim-3170 \mathrm{~kJ} \text { mol }
\end{aligned}
$$

(6) Two moles of superheated steam at $200^{\circ} \mathrm{C}$ is injected into 50 moles of $25^{\circ} \mathrm{C}$ water at a constant pressure of 1.0 bar under adiabatic conditions. Calculate the final temperature (T_{f}) of the system. The constant pressure molar heat capacities of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are 33.6 and $75.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$, respectively, and can be assumed to be independent of temperature. The enthalpy of vaporization at $100^{\circ} \mathrm{C}$ and 1 bar for $\mathrm{H}_{2} \mathrm{O}$ is $40.66 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

$$
\begin{array}{r}
\operatorname{adiabatio}, \text { so } q=0 \quad \therefore \quad q_{\text {steam }}+q_{H_{2} O}=0 \\
\text { (i) }
\end{array}
$$

(1) Steam $\left(200^{\circ} \mathrm{C}\right) \xrightarrow{n \bar{c}_{p} \Delta T}$ steam $\left(100^{\circ} \mathrm{C}\right) \xrightarrow{\text { - } \Delta t \text { vip }} \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), 100^{\circ} \mathrm{C} \rightarrow \mathrm{H}_{2} \mathrm{O}\left(T_{f}\right)$
(2) $\mathrm{H}_{2} \mathrm{O}(\ell)\left(25^{\circ} \mathrm{C}\right) \xrightarrow{n \bar{c}_{p, l} \Delta T} \mathrm{H}_{2} \mathrm{O}(l)\left(T_{f}\right)$

$$
2(33.6)(100-200)+2\left(-40.66 \times 10^{3}\right)+2(75.3)\left(T_{f}-100\right)
$$

$$
+50(75.3)\left(T_{f}-25\right)=0
$$

$$
T_{f}=50^{\circ} \mathrm{C}
$$

