(1) Show that $\left(\frac{\partial U}{\partial S}\right)_{V}=\left(\frac{\partial H}{\partial S}\right)_{P}$ and $\left(\frac{\partial H}{\partial P}\right)_{S}=\left(\frac{\partial G}{\partial P}\right)_{T}$ (note: these should be brief)

$$
\begin{gathered}
d U=T d S-P d V \quad d H=T d S+V d P \\
\left(\frac{\partial u}{\partial S}\right)_{V}=T \quad\left(\frac{\partial H}{\partial S}\right)_{P}=T \\
\therefore\left(\frac{\partial u}{S}\right)_{V}=\left(\frac{\partial H}{\partial S}\right)_{P} \\
d G=-S d T+V d P \\
\left(\frac{\partial G}{\partial P}\right)_{T}=V \\
\therefore\left(\frac{\partial H}{\partial P}\right)_{S}=\left(\frac{\partial G}{\partial P}\right)_{T}
\end{gathered}
$$

(2) (a) Given that $S=f(T, P)$, derive an expression for $d S$ in terms of T and P that is valid for any fluid (ie., in terms of quantities like C_{p}, α, and κ).
(b) The coefficient of thermal expansion α of $\mathrm{Fe}(\mathrm{s})$ at $25^{\circ} \mathrm{C}$ is $355 \times 10^{-7} \mathrm{~K}^{-1}$. What is the change in molar entropy of iron when the pressure is raised from 1 to 1000 bar at a constant temperature of $25^{\circ} \mathrm{C}$? (The density of iron at $25^{\circ} \mathrm{C}$ is $7.86 \mathrm{~g} \mathrm{~cm}^{-3}$.)
(a) $d S=\left(\frac{\partial S}{\partial T}\right)_{P} d T+\left(\frac{\partial S}{\partial P}\right)_{T} d P$

$$
\begin{aligned}
& \uparrow \\
& d s=\frac{d q_{\text {rev }}}{T}=\frac{C_{p} d T}{\frac{T}{T}} \text { at cost } P . \\
& \Rightarrow\left(\frac{\partial s}{\partial T}\right)_{p}=\frac{C_{p}}{T}
\end{aligned}
$$

For $\left(\frac{\partial S}{\partial P}\right)_{T}$ a maxwdl relation jives

$$
-\left(\frac{\partial V}{\partial T}\right)_{p}
$$

$$
d S=\frac{c_{p}}{T} d T-\left(\frac{\partial v}{\partial T}\right)_{p} d p
$$

but

$$
\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial \tau}\right)_{p} \text { so }
$$

so $\left(\frac{\partial V}{\partial T}\right)_{p}=V \alpha$
(b) at const. $T, d S=-V \alpha d P$
assuming V and α are independet of P,

$$
\begin{aligned}
& \Delta S=-V \alpha \Delta P \text { ar } \Delta \bar{S}=-\bar{V} \alpha \Delta P \\
& \bar{V}=\frac{1}{\rho}=\frac{1 \mathrm{~cm}^{3}}{7.86 \mathrm{~g}} \times \frac{55.847 \mathrm{~g}}{\mathrm{~mol}} \times\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)^{3} \\
& =7.1052 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{mol} \\
& \Delta \bar{S}=-\left(7.1052 \times 10^{-6}\right)\left(355 \times 10^{-7}\right)(1000-1) \times \frac{10^{5} \mathrm{~Pa}}{1 \mathrm{bar}} \\
& =-0.0252 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

(3) In the thermodynamics of elastic materials, $d A=-S d T+f d L$, where f is the force exerted and L is the stretching displacement. Derive the appropriate Maxwell relation and then use this to obtain an expression for ΔS for isothermal stretching.

$$
d A=\left(\frac{\partial A}{\partial T}\right)_{L} d T+\left(\frac{\partial A}{\partial L}\right)_{T} d L
$$

from Euler's criterion: $\left[\frac{\partial}{\partial L}\left(\frac{\partial A}{\partial T}\right)_{L}\right]_{T}=\left[\frac{\partial}{\partial T}\left(\frac{\partial A}{\partial L}\right)_{T}\right]_{L}$
but $\left(\frac{\partial A}{\partial T}\right)_{L}=-S$
and $\left(\frac{\partial A}{\partial L}\right)_{T}=f$

$$
\text { so }-\left(\frac{\partial S}{\partial L}\right)_{T}=\left(\frac{\partial f}{\partial T}\right)_{L}
$$

for isothermal stretching,

$$
\left(\frac{\partial S}{\partial L}\right)_{T}=-\left(\frac{\partial f}{\partial T}\right)_{L}
$$

$d S=-\left(\frac{\partial f}{\partial T}\right)_{L} d L \quad$ at cost.
o $\Delta S=-\int_{L_{1}}^{L_{2}}\left(\frac{\partial f}{\partial T}\right)_{L} d L$
(4) Steam is compressed reversibly to liquid water at the boiling point $\left(100^{\circ} \mathrm{C}\right)$ and 1 atm . The heat of vaporization of water at $100^{\circ} \mathrm{C}$ and 1.01325 bar is $2258 \mathrm{~J} \mathrm{~g}^{-1}$. Calculate w per mole and q per mole and each of the thermodynamic quantities $\Delta \bar{H}, \Delta \bar{U}, \Delta \bar{G}, \Delta \bar{A}$, and $\Delta \bar{S}$. You can assume that the volume of the liquid is negligible compared to that of the gas.

$$
\begin{aligned}
& \Delta \bar{H}=q_{p}=-2258 \frac{\mathrm{~J}}{\mathrm{~g}} \times \frac{18.015 \mathrm{~g}}{\mathrm{~mol}}=-40,678 \mathrm{~J} / \mathrm{mol} \\
& \Delta \bar{S}=\frac{\Delta \bar{H}}{T} \text { since isothermal } \\
& =\frac{-40,678}{373.15}=-109.01 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& \Delta \bar{u}=\Delta \bar{H}-\Delta(P V) \cong \Delta \bar{H}-\Delta n_{g} R T \\
& \begin{array}{c}
=-40,678-(-1)(8.3145)(373.15)=-37,575 \mathrm{~J} / \mathrm{mal} \\
\hat{L}_{\text {condensation }}
\end{array} \\
& \Delta \bar{G}=\Delta \bar{H}-T \Delta \bar{S}=-40,678-(373.15)(-109.01) \\
& =0.0 \text { reversible! } \\
& \omega=\Delta u-q=-37,575-(-40,678) \\
& =3103 \mathrm{~J} / \mathrm{mol}
\end{aligned}
$$

for an isothermal rev. process, $\Delta A=\omega$

$$
\text { so } \Delta A=3103 \mathrm{~J} / \mathrm{mol}
$$

(5) When a liquid is compressed its Gibbs energy is increased. The increase in molar Gibbs energy can be calculated using $\left(\frac{\partial \bar{G}}{\partial P}\right)_{T}=\bar{V}$. What is the change in molar Gibbs energy for liquid water $\left(\rho=1.0 \mathrm{~g} \mathrm{~cm}^{-3}\right)$ when it is compressed from 1 to 1000 bar (assuming \bar{V} is constant)?
from above, $d \bar{G}=\bar{V} d P$ at const. T

$$
\begin{aligned}
& \Delta \bar{G}=\bar{V} \Delta P \\
& \bar{V}=\frac{1}{\rho}=\frac{\mathrm{cm}^{3}}{1.0 \delta} \times \frac{18.02 \mathrm{~g}}{\mathrm{~mol}}=18.02 \mathrm{~cm}^{3} / \mathrm{mol} \\
& =1.802 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{mol} \\
& \Delta \bar{G}=\left(1.802 \times 10^{-5}\right)\left(999 \times 10^{5} \mathrm{~Pa}\right) \\
& =
\end{aligned}
$$

(6) Starting with the fundamental equation for U, derive the relation $\left(\frac{\partial U}{\partial P}\right)_{T}=V(\kappa P-\alpha T)$

$$
d U=T d S-P d V
$$

divide both sides by $d P$ at cost. T

$$
\left.\frac{d U}{d P}\right|_{T}=\left.T \frac{d S}{d P}\right|_{T} \$-\left.P \frac{d V}{d P}\right|_{T}
$$

so

$$
\left(\frac{\partial U}{\partial P}\right)_{T}=T\left(\frac{\partial S}{\partial P}\right)_{T}-P\left(\frac{\partial V}{\partial P}\right)_{T}
$$

$$
\begin{array}{ll}
\uparrow & \uparrow \\
-\left(\frac{\partial V}{\partial r}\right)_{p} & =-V \alpha \\
\uparrow \\
=-V \alpha
\end{array}
$$

so

$$
\begin{aligned}
\left(\frac{\partial U}{\partial P}\right)_{T} & =-T V \alpha+P V \alpha \\
& =V(K P-\alpha T)
\end{aligned}
$$

