SOLUTIONS
Due in class: Tues, Oct. 17th
(1) In class we derived the Gibbs-Helmholtz equation as the temperature dependence of the quantity $\Delta \mathrm{G} / \mathrm{T}$ at constant P to be $d(\Delta G / T)=-\Delta H / T^{2} d T$. Use the chain rule for derivatives to derive the Gibbs-Helmholtz equation in terms of $1 / \mathrm{T}$, i.e., $d(\Delta G / T)=$

$$
\left(\frac{\partial \Delta G / T}{\partial 1 / T}\right)_{p}^{\Delta H d(1 / T)}=\left(\frac{\partial \Delta G / T}{\partial T}\right)_{p}\left(\frac{\partial T}{\partial 1 T}\right)
$$

but $\frac{d}{d T}\left(\frac{1}{T}\right)=-\frac{1}{T^{2}}$ so $d\left(\frac{1}{T}\right)=\frac{-d T}{T^{2}}$
hence $\left(\frac{d T}{d y}\right)=-T^{2}$

$$
\left(\frac{\partial \Delta G / T}{\partial I T}\right)_{P}=\left(\frac{\partial \Delta G T T}{\partial T}\right)_{p}\left(-T^{2}\right)=\frac{-\Delta H}{T^{2}}\left(-T^{2}\right)=\Delta H
$$

$\therefore d(\Delta G / T)=S H d(1 / T)$ at const. P
(2) Use the van der Wails (vdU) equation of state to calculate the molar volume of CO at 200 K and 1000 bar. Compare your result to the value you would get using the ideal gas equation of state. The experimental value is $0.04009 \mathrm{~L} \mathrm{~mol}^{-1}$. The vdW parameters of CO are $a=1.4734$ dm^{6} bar mol^{-2} and $b=0.039523 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$.
van der Walls:

$$
\begin{array}{cl}
& \bar{V}^{3}-\left(b+\frac{R T}{p}\right) \bar{V}^{2}+\frac{a}{p} \bar{V}-\frac{a b}{p}=0 \\
a= & 1.4734 \mathrm{dm}^{6} \cdot \text { bar } \cdot \text { mol }^{-2} \quad \text { by successive approx } \\
b= & 0.039523 \mathrm{dm}^{3} / \mathrm{mol} \quad
\end{array} \quad \bar{V}=0.049985 \quad \text { Lmol }{ }^{-1} \text {. }
$$

(eqn differs from zero by
Redlich-Kwong:

$$
\begin{aligned}
& \bar{V}^{3}-\frac{R T}{\rho} \bar{V}^{2}-\left(B^{2}+\frac{B R T}{\rho}-\frac{A}{T^{1 / 2 \rho}}\right) \bar{V}-\frac{A B}{T^{1 / 2} \rho}=0 \\
& A=17.208 \mathrm{dm}^{6}-\text { bar } \cdot \mathrm{mol}^{-2} \cdot \mathrm{~K}^{1 / 2} \\
& B=0.027394 \mathrm{dm} / \mathrm{ml}
\end{aligned}
$$

by successive approx

$$
\widehat{V}=0.0386554 / \mathrm{ml} \quad\left(e q_{n}=-3.0 \times 10^{-9}\right)
$$

$$
\text { Idea gas }, \bar{V}=\frac{R T}{P}=0.01663 \mathrm{~L} / \mathrm{mal}
$$

(3) Show that $B_{2 v}(\mathrm{~T})=\mathrm{RT} B_{2 \mathrm{P}}(\mathrm{T})$, ie., relate the 2 nd virial coefficient in terms of molar volume $\left(B_{2} \mathrm{~V}\right)$ to that from the expansion of pressure $\left(B_{2 \mathrm{P}}\right)$.
(1) $\frac{P \bar{V}}{R T}=1+B_{2 V}\left(\frac{1}{V}\right)+B_{3 v}\left(\frac{1}{V}\right)^{2}+\cdots \cdot$
(2) $\frac{P \bar{V}}{R T}=1+B_{2 p} P+B_{3 P} P^{2}+\cdots$
from (1): $P=\frac{R T}{\bar{V}}\left(1+B_{2 v}\left(\frac{1}{V}\right)+B_{3 v}\left(\frac{1}{V}\right)^{2}+\cdots\right)$

$$
=\frac{R T}{\bar{v}}+R T B_{2 v}\left(\frac{1}{\hat{V}}\right)^{2}+R T B_{3 v}\left(\frac{1}{\bar{v}}\right)^{3}+\cdots
$$

Substituting this into (2)
(3)

$$
\begin{aligned}
\frac{P \bar{V}}{R T}=1+B_{2 P}\left[\frac{R T}{\bar{V}}\right. & \left.+R T B_{2 V}\left(\frac{1}{V}\right)^{2}+\cdots\right] \\
& +B_{3 p}\left[\frac{R T}{\bar{V}}+\cdots\right]^{2}
\end{aligned}
$$

equate powers of $\frac{1}{V}$ between (1) and (3)

$$
B_{2 v}=R T B_{2 p}
$$

(4) Use the following data for $\mathrm{NH}_{3}(\mathrm{~g})$ at 273 K to determine $B_{2} \mathrm{P}(\mathrm{T})$ at 273 K .

$P /$ bar	0.10	0.20	0.30	0.40	0.50	0.60	0.70
$(Z-1) / 10^{-4}$	1.519	3.038	4.557	6.071	7.583	9.002	10.551

Please attach any graph needed for this problem. Using Excel is fine.
Note: to be clear, the first entry under the $P=0.10$ bar column is $Z=1+1.519 \times 10^{-4}$
see the attached graph of Z vs. P

$$
z=1+B_{2 p} P+B_{3} P^{2}+\cdots
$$

assuming only B_{20} contributes (fit to straight live)

$$
B_{2 p}=0,001502 \mathrm{bar}^{-1} \quad\left(\begin{array}{c}
\text { probably old } \\
2 \\
\text { sig figs though }
\end{array}\right)
$$

allowing for $B_{s p}$ (fit to quadratic)

$$
B_{2 p}=0.001536 \mathrm{bar}^{-1}
$$

(5) The density of oxygen $\left(\mathrm{O}_{2}\right)$ as a function of pressure at 273.15 K is listed below.

$P /$ atm	0.2500	0.5000	0.7500	1.0000
$\rho / \mathrm{g} \mathrm{dm}^{-3}$	0.356985	0.714154	1.071485	1.428962

Please attach any graph needed for this problem. Using Excel is fine.
Use this data to determine $B_{2} \mathrm{~V}(\mathrm{~T})$ for oxygen. Take the atomic mass of oxygen to be 15.9994 amu and the value of the molar gas constant to be $8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}=0.0820578 \mathrm{dm}^{3} \mathrm{~atm}$ $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$ 。

P/atm	0.2500	0.5000	0.7500	1.0000
$\rho / \mathrm{g} \mathrm{dm}^{-3}$	0.356985	0.714154	1.071485	1.428962
$\frac{1}{\nabla}:$	0.011562	0.0223181	0.0334852	0.0446567
$z:$	0.999776	0.999521	0.9992802	0.999068

Convert ρ to $\frac{1}{\vec{V}}=\frac{1}{\vec{V}}=\frac{\rho}{m \omega}$ or $\vec{V}=\frac{m \omega}{\rho}$ Convert P and $\frac{1}{\sqrt{V}}$ to Z at 273.15 K

$$
\begin{aligned}
& z=\frac{P \bar{V}}{R T} \\
& \text { plate } \frac{1}{\bar{v}} \text { vs. z } \quad z=1+B_{2 v}\left(\frac{1}{\bar{v}}\right)+B_{3 v}\left(\frac{1}{\sqrt{v}}\right)^{2}+\cdots \\
& \text { assunnys linear, } B_{2 v}=-0.02134 \mathrm{dm}^{3} \\
& \text { assuming gucdatici, } \hat{\beta}_{2 v}=-0.02548 \mathrm{dm}^{3}
\end{aligned}
$$

