Chem 531: Problem Set #5

SOLUTIONS

Due in class: Tues, Oct. 17th

(1) In class we derived the Gibbs-Helmholtz equation as the temperature dependence of the quantity $\Delta G/T$ at constant P to be $d(\Delta G/T) = -\Delta H/T^2 dT$. Use the chain rule for derivatives to derive the Gibbs-Helmholtz equation in terms of 1/T, i.e., $d(\Delta G/T) = \Delta H d(1/T)$.

$$\begin{pmatrix} \frac{\partial \Delta G}{\partial T} \\ \frac{\partial I}{\partial T} \end{pmatrix}_{p} = \begin{pmatrix} \frac{\partial \Delta G}{\partial T} \\ \frac{\partial T}{\partial T} \end{pmatrix}_{p} \begin{pmatrix} \frac{\partial T}{\partial IT} \\ \frac{\partial I}{\partial T} \end{pmatrix}$$
but $\frac{d}{dT} \begin{pmatrix} \frac{1}{T} \end{pmatrix}_{T} = -\frac{1}{T^{2}}$ so $d\begin{pmatrix} \frac{1}{T} \end{pmatrix} = -\frac{dT}{T^{2}}$
hence $\begin{pmatrix} \frac{dT}{dIT} \end{pmatrix} = -T^{2}$

$$\left(\frac{\partial \Delta G/T}{\partial T}\right)_{p} = \left(\frac{\partial \Delta G/T}{\partial T}\right)_{p} \left(-T^{2}\right) = -\frac{\Delta H}{T^{2}}\left(-T^{2}\right) = \Delta H$$

: d(DGIT) = SHd(IT) at const. P

(2) Use the van der Waals (vdW) equation of state to calculate the molar volume of CO at 200 K and 1000 bar. Compare your result to the value you would get using the ideal gas equation of state. The experimental value is 0.04009 L mol⁻¹. The vdW parameters of CO are a = 1.4734 dm⁶ bar mol⁻² and b=0.039523 dm³ mol⁻¹.

Van der Waals:

$$\overline{V}^{3} - (b + \frac{RT}{P})\overline{V}^{2} + \frac{a}{P}\overline{V} - \frac{ab}{P} = 0$$

$$a = 1.4734 \ dm^{6} \ bar \ mol^{-2} \qquad by \ successive \ approx$$

$$b = 0.039523 \ dm^{3} \ lmrl \qquad \overline{V} = 0.049985 \ Lmel^{-1}$$

$$(egn \ differs \ from \ zero \ by \ G.4 \times 10^{-1})$$

$$\overline{V}^{3} - \frac{RT}{P}\overline{V}^{2} - (B^{2} + \frac{BRT}{P} - \frac{A}{T^{112}P})\overline{V} - \frac{AB}{T^{12}P} = 0$$

$$A = 17.208 \ dm^{6} \ bar \ mol^{-2} \ u^{12}$$

$$B = 0.027394 \ dm^{2} \ mrl$$

$$\overline{V} = 0.038655 \ 4/mrl (egn = -3.0 \times 10^{-9})$$

 $expt: 0.04009 \ Llmol$ $Ideal gas, \quad \overline{V} = \frac{RT}{P} = [0.01663 \ L]mal$

(3) Show that $B_{2V}(T) = RTB_{2P}(T)$, i.e., relate the 2nd virial coefficient in terms of molar volume (B_{2V}) to that from the expansion of pressure (B_{2P}) .

(4) Use the following data for $NH_3(g)$ at 273 K to determine $B_{2P}(T)$ at 273 K.

P/bar	0.10	0.20	0.30	0.40	0.50	0.60	0.70
$(Z-1)/10^{-4}$	1.519	3.038	4.557	6.071	7.583	9.002	10.551

Please attach any graph needed for this problem. Using Excel is fine.

Note: to be clear, the first entry under the P = 0.10 bar column is $Z = 1 + 1.519 \times 10^{-4}$

see the attached graph of 2 vs. P $2 = 1 + B_{2P}P + B_{3r}P^{2} + \cdots$ assuming only B_{2P} contributes (fit to straight live) $B_{2P} = 0.001502$ bar⁻¹ (probably only 2 sig figs though)allowing for B_{3P} (fit to guadratic) $B_{2P} = 0.001536$ bar⁻¹

(5) The density of oxygen (O₂) as a function of pressure at 273.15 K is listed below.

P/atm	0.2500	0.5000	0.7500	1.0000
$\rho/g \text{ dm}^{-3}$	0.356985	0.714154	1.071485	1.428962

Please attach any graph needed for this problem. Using Excel is fine.

Use this data to determine $B_{2V}(T)$ for oxygen. Take the atomic mass of oxygen to be 15.9994 amu and the value of the molar gas constant to be 8.31451 J K⁻¹ mol⁻¹ = 0.0820578 dm³ atm K⁻¹ mol⁻¹.

	P/atm	0.2500	0.5000	0.7500	1.0000
35	$\rho/g dm^{-3}$	0.356985	0.714154	1.071485	1.428962
	L :	0.0111562	0.0223181	0.0334852	0.0446567
	V 2:	0.999776	0999521	09992802	0.999062

Convert
$$g$$
 to $\frac{1}{V}$: $\frac{1}{V} = \frac{g}{m\omega}$ or $V = \frac{m\omega}{g}$
Convert P and $\frac{1}{V}$ to z at 273.15 K
 $z = \frac{PV}{RT}$
plot $\frac{1}{V}$ vs. z $z = 1 + B_{2V} \left(\frac{1}{V}\right) + B_{3U} \left(\frac{1}{V}\right)^{2} + \cdots$
assuming linear, $B_{2V} = -0.02134$ dm³
assuming quidable, $B_{2V} = -0.02548$ dm³
 2 noticeably better fit

