Chem 531: Problem Set #6

Due in class: Thurs, October 26th

\overline{V} (in cm ³ /mol)	18224	1743	828	366
P (in atm)	1	10	20	40
\overline{V} (in cm ³ /mol)	207	128.7	91.4	76.3
P (in atm)	60	80	100	120

(1) For CH4 at -50° C, measured \overline{V} values as a function of P are

Find the fugacity and fugacity coefficient of CH₄ at -50° C and 120 atm (Hint: use the above data in a polynomial fit of (Z–1)/P). Please show all work (including plots).

(2) When two phases are in equilibrium, their chemical potentials are equal (for fixed T and P).

(a) Show that as the temperature is varied at constant P from the transition temperature by ΔT ,

the difference in chemical potentials between the two phases is equal to $-\Delta \overline{S} \Delta T$. Where $\Delta \overline{S}$ is the difference in molar entropies of the two phases. Assume the molar entropies are independent of *T*.

(b) then by what amount does the chemical potential of water exceed that of ice at -5.00° C?

(c) likewise by what amount does the chemical potential of water exceed that of steam at 105.00° C?

(3) Carbon tetrachloride melts at 250 K. The vapor pressure of the liquid is 10,539 Pa at 290 K and 74,518 Pa at 340 K. The vapor pressure of the solid is 270 Pa at 232 K and 1092 Pa at 250 K.

- (a) Calculate ΔH_{vap} and ΔH_{sub}
- **(b)** Calculate ΔH_{fus}

(c) Calculate the <u>normal</u> boiling point and ΔS_{vap} at the boiling point

(4) The normal melting point of H₂O is 273.15 K and $\Delta H_{\text{fus}} = 6008$ J/mol. Calculate the decrease in the normal freezing point at 500 bar assuming that the densities of the liquid and solid phases remain constant at 997 and 917 kg m⁻³, respectively.

(5) Using the integrated forms of the Clapeyron and Clausius-Clapeyron equations, construct the

- (a) solid-liquid
- (b) solid-gas
- (c) liquid-gas

portions of the phase boundaries for pure benzene around its triple point ($P_{trip}=36$ torr and $T_{trip}=278.5$ K) by calculating the changes in pressure when the temperature is raised and/or lowered by 2 K around T_{trip} . For benzene, $\Delta H_{fus}=10.6$ kJ/mol, $\Delta H_{vap}=30.8$ kJ/mol, $\Delta H_{sub}=41.4$ kJ/mol, $\rho(s)=0.891$ g/cm³, and $\rho(l)=0.879$ g/cm³.