Chem 531: Problem Set \#6

Due in class: Thurs, October 26th
(1) For CH_{4} at $-50^{\circ} \mathrm{C}$, measured \bar{V} values as a function of P are

$\bar{V}\left(\mathrm{in} \mathrm{cm}^{3} / \mathrm{mol}\right)$	18224	1743	828	366
$\mathrm{P}(\mathrm{in} \mathrm{atm})$	1	10	20	40
$\bar{V}\left(\mathrm{in} \mathrm{cm}^{3} / \mathrm{mol}\right)$	207	128.7	91.4	76.3
$\mathrm{P}(\mathrm{in} \mathrm{atm})$	60	80	100	120

Find the fugacity and fugacity coefficient of CH_{4} at $-50^{\circ} \mathrm{C}$ and 120 atm (Hint: use the above data in a polynomial fit of (Z-1)/P). Please show all work (including plots).
(2) When two phases are in equilibrium, their chemical potentials are equal (for fixed T and P).
(a) Show that as the temperature is varied at constant P from the transition temperature by ΔT, the difference in chemical potentials between the two phases is equal to $-\Delta \bar{S} \Delta T$. Where $\Delta \bar{S}$ is the difference in molar entropies of the two phases. Assume the molar entropies are independent of T.
(b) then by what amount does the chemical potential of water exceed that of ice at $-5.00^{\circ} \mathrm{C}$?
(c) likewise by what amount does the chemical potential of water exceed that of steam at $105.00^{\circ} \mathrm{C}$?
(3) Carbon tetrachloride melts at 250 K . The vapor pressure of the liquid is $10,539 \mathrm{~Pa}$ at 290 K and $74,518 \mathrm{~Pa}$ at 340 K . The vapor pressure of the solid is 270 Pa at 232 K and 1092 Pa at 250 K.
(a) Calculate $\Delta H_{\text {vap }}$ and $\Delta H_{\text {sub }}$
(b) Calculate $\Delta H_{\text {fus }}$
(c) Calculate the normal boiling point and $\Delta S_{\text {vap }}$ at the boiling point
(4) The normal melting point of $\mathrm{H}_{2} \mathrm{O}$ is 273.15 K and $\Delta H_{\text {fus }}=6008 \mathrm{~J} / \mathrm{mol}$. Calculate the decrease in the normal freezing point at 500 bar assuming that the densities of the liquid and solid phases remain constant at 997 and $917 \mathrm{~kg} \mathrm{~m}^{-3}$, respectively.
(5) Using the integrated forms of the Clapeyron and Clausius-Clapeyron equations, construct the (a) solid-liquid
(b) solid-gas
(c) liquid-gas
portions of the phase boundaries for pure benzene around its triple point ${ }_{(} P_{\text {trip }}=36$ torr and $T_{\text {trip }}=278.5 \mathrm{~K}$) by calculating the changes in pressure when the temperature is raised and/or lowered by 2 K around $T_{\text {trip }}$. For benzene, $\Delta H_{\text {fus }}=10.6 \mathrm{~kJ} / \mathrm{mol}, \Delta H_{\text {vap }}=30.8 \mathrm{~kJ} / \mathrm{mol}, \Delta H_{\text {sub }}=41.4$ $\mathrm{kJ} / \mathrm{mol}, \rho(\mathrm{s})=0.891 \mathrm{~g} / \mathrm{cm}^{3}$, and $\rho(\mathrm{l})=0.879 \mathrm{~g} / \mathrm{cm}^{3}$.

