Chem 531: Problem Set \#9

Due in class: Thursday, December 7th
(1) Consider the equilibrium $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \rightleftarrows \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$. At 1000 K and a constant total pressure of 1 bar, $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$ is introduced into a reaction vessel. The total pressure is held constant at 1 bar and at equilibrium the composition of the mixture in mole percent is $\mathrm{H}_{2}(\mathrm{~g})$:
$26 \%, \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}): 26 \%$, and $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}): 48 \%$.
(a) Calculate K_{P} at 1000 K .
(b) If $\Delta H_{r}^{0}=137.0 \mathrm{~kJ} / \mathrm{mol}$, estimate the value of K_{P} at 298.15 K .
(c) Calculate ΔG_{r}^{0} for this reaction at 298.15 K .
(2) The following data apply to the reaction $\mathrm{Br}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{Br}(\mathrm{g})$:

$T($ in K $)$	1123	1172	1223	1273
K_{P}	0.408×10^{-3}	1.42×10^{-3}	3.32×10^{-3}	7.2×10^{-3}

Determine by graphical means the reaction enthalpy at 1200 K .

