The Temperature Dependence of lnK

van't Hoff equation:
$$\frac{d \ln K}{dT} = \frac{\Delta H_r^o}{RT^2}$$

What if we can't assume that ΔH_r^o is independent of T?

Recall: $\Delta H_r^o(T) = \Delta H_r^o(T=0) + \int_0^T \Delta_r C_p$ (assuming no phase changes)

where
$$\Delta_r C_p = \sum_{i}^{N_s} v_i C_{p,i}$$

and in general, $C_p = a + bT + cT^2 + \cdots$ and then $\Delta_r C_p = \Delta a + \Delta bT + \Delta cT^2 + \cdots$. (and $\Delta b = \sum_{i=1}^{N_s} v_i b_i$, etc.)

Then:

A.
$$\Delta H_r^o(T) = \Delta H_r^o(T=0) + \Delta aT + \frac{1}{2}\Delta bT^2 + \frac{1}{3}\Delta cT^3 + \cdots$$

and: $d\ln K = \frac{1}{RT^2} \Big[\Delta H_r^o(T=0) + \Delta aT + \frac{1}{2}\Delta bT^2 + \frac{1}{3}\Delta cT^3 + \cdots \Big] dT$

integrating:

B.
$$\ln K = -\frac{\Delta H_r^o(T=0)}{RT} + \frac{\Delta a}{R} \ln T + \frac{\Delta b}{2R}T + \dots + I$$

where *I* is a constant of integration

Notes:

- (1) if $\Delta H_r^o(T)$ is known for any one temperature (perhaps 298 K) and $C_p(T)$ is known for each reactant and product, then $\Delta H_r^o(T = 0)$ can be calculated (eqn. A).
- (2) if $\Delta H_r^o(T = 0)$ is known for the reaction and *K* is known for <u>any</u> one temperature, *I* can be evaluated (eqn. B).
- (3) Then K can be calculated at <u>any</u> temperature.