Chem 532: Problem Set \#1

Due by 5pm: Friday, Sept. 9th
(1) Demonstrate whether $x^{2} \frac{d}{d x}$ and $x \frac{d^{2}}{d x^{2}}$ commute. What about $x \frac{d}{d x}$ and $x^{2} \frac{d^{2}}{d x^{2}}$?
(2) If A and B are hermitian operators, prove
(a) that their product AB is hermitian only if A and B commute
(b) that $\frac{1}{2}(A B+B A)$ is hermitian
(c) that $\mathrm{A}+i \mathrm{~B}$ and $\mathrm{A}-i \mathrm{~B}$ are not hermitian
(3) Consider the following normalized hydrogen atom wave functions that are degenerate eigenfunctions of the (hermitian) total angular momentum operator L^{2}.

$$
\begin{aligned}
& 2 p_{1}=\frac{-1}{8 \sqrt{\pi}}\left(\frac{1}{a_{0}}\right)^{5 / 2} r e^{-r /\left(2 a_{0}\right)} \sin \theta e^{i \phi} \\
& 2 p_{-1}=\frac{1}{8 \sqrt{\pi}}\left(\frac{1}{a_{0}}\right)^{5 / 2} r e^{-r /\left(2 a_{0}\right)} \sin \theta e^{-i \phi} \\
& 2 p_{x}=\frac{1}{\sqrt{2}}\left(2 p_{-1}+2 p_{1}\right)=\frac{1}{4 \sqrt{2 \pi}}\left(\frac{1}{a_{0}}\right)^{5 / 2} r e^{-r /\left(2 a_{0}\right)} \sin \theta \cos \phi
\end{aligned}
$$

where a_{0} is a constant.
(a) Show that $2 p_{x}$ and $2 p_{1}$ are not orthogonal. (Note: $2 p_{1}$ and $2 p_{-1}$ are orthonormal)
(b) Use Schmidt orthogonalization to construct linear combinations of the functions of part (a) that will be orthogonal and then normalize these functions.
(Note: you can do both parts without actually doing any integrals)
(4) The (hermitian) operators for energy and angular momentum for an electron constrained to move in a ring of constant potential are, respectively, $-\left(\frac{1}{2}\right) \frac{d^{2}}{d \phi^{2}}$ and $\left(\frac{1}{i}\right) \frac{d}{d \phi}$.
(a) Discuss/show whether or not there should be a set of functions that are simultaneously eigenfunctions for both operators.
(b) Discuss whether or not there is a set of functions that are eigenfunctions for one of these operators but not the other.

