Do $x^{2} \frac{d}{d x}$ and $x \frac{d^{2}}{d x^{2}}$ commute?

$$
\begin{aligned}
& {\left[x^{2} \frac{d}{d x}, x \frac{d^{2}}{d x^{2}}\right] f=x^{2} \frac{d}{d x} \times \frac{d^{2}}{d x^{2}} f-x \frac{d^{2}}{d x^{2}} x^{2} \frac{d}{d x} f} \\
& =x^{2} \frac{d}{d x} x f^{\prime \prime}-x \frac{d^{2}}{d x^{2}} x^{2} f^{\prime} \\
& =x^{2}\left[x f^{\prime \prime \prime}+f^{\prime \prime}\right]-x \frac{d}{d x}\left[x^{2} f^{\prime \prime}+2 x f^{\prime}\right] \\
& =x^{3} f^{\prime \prime \prime}+x^{2} f^{\prime \prime}-x\left[x^{2} f^{\prime \prime \prime}+2 x f^{\prime \prime}+2 x f^{\prime \prime}+2 f^{\prime}\right]
\end{aligned}
$$

$\neq 0 \quad$ No!
what abort $x \frac{d}{d x}$ and $x^{2} \frac{d^{2}}{d x^{2}}$

$$
\begin{aligned}
& {\left[x \frac{d}{d x}, x^{2} \frac{d^{2}}{d x^{2}}\right] f=x \frac{d}{d x} x^{2} \frac{d^{2}}{d x^{2}} f-x^{2} \frac{d^{2}}{d x^{2}} x \frac{d}{d x} f} \\
& =x \frac{d}{d x} x^{2} f^{\prime \prime}-x^{2} \frac{d^{2}}{d x^{2}} x f^{\prime} \\
& =x\left[x^{2} f^{\prime \prime \prime}+2 x f^{\prime \prime}\right]-x^{2} \frac{d}{d x}\left[x f^{\prime \prime}+f^{\prime}\right] \\
& =x^{3} f^{\prime \prime \prime}+2 x^{2} f^{\prime \prime}-x^{2}\left[x f^{\prime \prime \prime}+f^{\prime \prime}+f^{\prime \prime}\right] \\
& =0 \quad \text { yes! }
\end{aligned}
$$

(2) if A and B are hermitian
(a) what about $A B$? is $\langle\psi| A B|\phi\rangle=\langle A B \psi \mid \phi\rangle$?
\downarrow
$\langle A \psi| B|\phi\rangle$ since A is hermitian \downarrow
$\langle B A \psi \mid \phi\rangle$ since B is hermitian
\downarrow
$\neq\langle A B \psi \mid \phi\rangle$ unless $B A=A B \quad \Omega \quad[A, B]=0$
(b) What about $\frac{1}{2}(A B+B A)$?

$$
\begin{aligned}
& \text { is }\langle 4| A B+B A|\phi\rangle=\frac{1}{2}\langle(A B+B A) 4 \mid \phi\rangle \text { ? } \\
& \left.\frac{1}{2}[4|A B| \phi\rangle+\langle 4| B A|\phi\rangle\right] \\
& \frac{1}{2}[\langle A B \psi \mid \phi\rangle+\quad\langle B A \psi \mid \phi\rangle] \\
& \begin{array}{l}
\langle B A 4 \mid \phi\rangle \\
\text { since } A+B
\end{array} \\
& \frac{1}{2}[\langle A \psi| B|\phi\rangle+\langle B 4| A|\phi\rangle] \rightarrow \frac{1}{2}[\langle B \psi| A|\phi\rangle+\langle A \psi| B|\phi\rangle]
\end{aligned}
$$

Note: this resolves ambiguif of order issues e.sy $x p_{x}$ is not hermitian but $\frac{1}{2}\left(x p_{x}+p_{x} x\right)$ is.
(c) show $A+i B$ and $A-i B$ are not hermitian

$$
\begin{aligned}
\langle\psi| A+i B|\phi\rangle & =\langle\psi| A|\phi\rangle+\langle\psi| i B|\phi\rangle \\
& =\langle A \psi \mid \phi\rangle+\langle B \psi| i|\phi\rangle
\end{aligned}
$$

but if $A+i B$ is hermition, this must equal

$$
\begin{aligned}
\langle(A+i B) \psi \mid \phi\rangle & =\langle A \psi \mid \phi\rangle+\langle i B \psi \mid \phi\rangle \\
& =\langle A \psi \mid \phi\rangle-i\langle B \psi \mid \phi\rangle
\end{aligned}
$$

\therefore not hermitian

$$
\begin{aligned}
\langle\psi| A-i B|\phi\rangle & =\langle\psi| A|\phi\rangle-\langle\psi| i B|\phi\rangle \\
& =\langle A \psi \mid \phi\rangle-i\langle B \psi \mid \phi\rangle
\end{aligned}
$$

but $\langle(A-i B) \psi \mid \phi\rangle=\langle A 4 \mid \phi\rangle-\langle i B \psi \mid \phi\rangle$

$$
=\langle A \psi \mid \Phi\rangle+i\langle B \psi \mid \Phi\rangle
$$

\therefore not hermitian
(3)
(a) Show that $2 p_{x}$ and $2 p_{1}$ are not orthogonal

$$
\begin{aligned}
\left\langle 2 p_{1} \mid 2 p_{x}\right\rangle & =\frac{1}{\sqrt{2}}\left\langle 2 p_{1} \mid 2 p_{-1}+2 p_{1}\right\rangle \\
& =\frac{1}{\sqrt{2}}\left[\left\langle 2 p_{1} \mid 2 p_{-1}\right\rangle+\left\langle 2 p_{1}\right| \begin{array}{c}
\left.2 p_{1}\right\rangle
\end{array}\right]
\end{aligned}
$$

$=\frac{1}{\sqrt{2}} \quad$ not orthogonal
(b) Schmidt orthognalization:
let $\left|\phi_{1}\right|=\left|2 p_{x}\right\rangle$
then $\left|\phi_{2}\right\rangle=N_{2}\left[\left|2 p_{1}\right\rangle-\left|2 p_{x}\right\rangle\left\langle 2 p_{x} \mid 2 p_{1}\right\rangle\right]$

$$
=N_{2}\left[\left|2 p_{1}\right\rangle-\frac{1}{\sqrt{2}}\left|2 p_{x}\right\rangle\right]
$$

using the result from part (a)
normalize

$$
\begin{aligned}
& \left\langle\phi_{2} \mid \phi_{2}\right\rangle=1 \\
& N_{2}^{2}\left\langle\left. 2 p_{1}-\frac{1}{\sqrt{2}} 2 p_{x} \right\rvert\, 2 p_{1}-\frac{1}{\sqrt{2}} 2 p_{x}\right\rangle=1 \\
& N_{2}^{2}\left[\left\langle 2 p_{1} \mid 2 p_{1}\right\rangle-\frac{1}{\sqrt{2}}\left\langle 2 p_{1} \mid 2 p_{x}\right\rangle-\frac{1}{\sqrt{2}}\left\langle 2 p_{x} \mid 2 p_{1}\right\rangle+\frac{1}{2}\left\langle 2 p_{x} \mid 2 p_{x}\right\rangle\right]=1 \\
& N_{2}^{2}\left[1-\frac{1}{2}-\frac{1}{2}+\frac{1}{2}\right]=1 \\
& N_{2}^{2}=2 ; N_{2}=\sqrt{2} \\
& \left|\phi_{2}\right\rangle=\sqrt{2}\left|2 p_{1}\right\rangle-\left|2 p_{x}\right\rangle
\end{aligned}
$$

Consider the operators fur energy 4 angular momentum for the electorn constrained to a ring of constant potatid $-\frac{1}{2} \frac{d^{2}}{d \phi^{2}}$ and $-i \frac{d}{d \phi}$
a) Do these have a set of simultaneous eigmfuractions? thy $d o$ if the operators commute

$$
\begin{aligned}
{\left[-\frac{1}{2} \frac{d^{2}}{d \phi^{2}},-i \frac{d}{d \phi}\right] f } & =\frac{1}{2} i\left(\frac{d^{2}}{d \phi^{2}} \frac{d}{d \phi} f-\frac{d}{d \phi} \frac{d^{2}}{d \phi^{2}} f\right) \\
& =\frac{1}{2} i\left(f^{\prime \prime \prime}-f^{\prime \prime \prime}\right)=0 \text { yes! }
\end{aligned}
$$

b) Are there eigmfinctoris for one but not the eth? remember that eignfincturis ore $4=\frac{1}{\sqrt{2 \pi}} e^{i k \phi}$ where $k=0, \pm 1, \pm 2$, etc.

Calso on eigenfunction of ang-mom.
So for $k \neq 0$, the states are 2 -fold degenerate

$$
\begin{aligned}
& \text { for } k \neq 0 \text {, the states are 2-fold degenerate } \\
& \text { e.s., fun } k= \pm 1 \quad \psi_{+}=\frac{1}{\sqrt{2 \pi}} e^{i \phi} \quad \psi_{-}=\frac{1}{\sqrt{2 \pi}} e^{-i \phi}
\end{aligned}
$$

or $\quad \psi_{+}=\frac{1}{\sqrt{2} \pi}[\cos \phi+i \sin \phi]$ ard $\psi_{-}=\frac{1}{\sqrt{2} \pi}[\cos \phi-i \sin \phi]$
since these are degenerate, we are free to take linear combination's who affecting the eigmualiee, e.s.

$$
\begin{aligned}
& \psi_{1}=\frac{1}{\sqrt{2}} \psi_{+}+\frac{1}{\sqrt{2}} \psi_{-}=\frac{1}{\sqrt{\pi}} \cos \phi \\
& \psi_{2}=i \frac{1}{\sqrt{2}} \psi_{+}-i \frac{1}{\sqrt{2}} \psi_{-}=\frac{1}{\sqrt{\pi}} \sin \phi
\end{aligned}
$$

these are not eigenfunction of lng. mom

