Chem 532: Problem Set \#3

Due by 5pm: Friday, Sept. 30th

(1) We defined our simple harmonic oscillator ladder operators as:

$$
\hat{a}=\frac{\hat{Q}+i \hat{P}}{\sqrt{2}}, \hat{a}^{\dagger}=\frac{\hat{Q}-i \hat{P}}{\sqrt{2}}
$$

with $Q=\sqrt{\frac{m \omega}{\hbar}} x=\left(\frac{m k}{\hbar^{2}}\right)^{1 / 4} x$ and $\quad P=-i \frac{d}{d Q}$
Show that the position and momentum can then be written as:

$$
x=\sqrt{\frac{\hbar}{2 m \omega}}\left(\hat{a}+\hat{a}^{\dagger}\right), \quad \hat{p}_{x}=i \sqrt{\frac{m \hbar w}{2}}\left(\hat{a}^{\dagger}-\hat{a}\right)
$$

(2) Evaluate the following commutators
(a) $\left[\hat{a}^{\dagger}, \hat{a}\right]$
(b) $\left[\hat{H}, \hat{a}^{\dagger}\right]$, where H is the harmonic oscillator Hamiltonian
(3) Consider the anharmonic oscillator with $\hat{H}=-\frac{1}{2} \frac{d^{2}}{d x^{2}}+\frac{1}{2} k x^{2}+c x^{3}$.

Compared to the usual harmonic case, the first non-zero correction to the energy due to the anharmonic term $c x^{3}$ is given by weighted sums over the integrals $\left\langle v^{\prime}\right| x^{3}|\mathrm{v}\rangle$, where $|\mathrm{v}\rangle$ are harmonic oscillator eigenfunctions with quantum number v (or v^{\prime}). Evaluate this integral for a general $\left\langle\mathrm{v}^{\prime}\right|$ and $|\mathrm{v}\rangle$ (hint: use the ladder operator representation of x)
(4) Single-walled carbon nanotubes can be approximated by a particle-on-a-cylindricalsurface model. Suppose the cylinder has length L and radius a, with the z-axis along the cylinder.
a) Write the kinetic energy operator of the electron in terms of the length z, the radius a, and the radial angle ϕ of the cylinder.
b) Combing ideas from the particle-in-a-box and particle-on-a-ring models, show that the wavefunction can be written as $\psi=A \sin \left(\frac{n \pi}{L} z\right) e^{i k \phi}$. What are the allowed values of the quantum numbers n and k ?
c) Write the energy expression in terms of n, k, L, a, and fundamental constants. For a nanotube of radius $5.5 \AA$ and length $120 \AA$, compute the energy spacing between the lowest energy levels.
(5) Convert the Laplacian operator from x, y cartesian coordinates to plane polar coordinates via the chain rule.

