Chem 532: Problem Set \#4

Due in class: Monday, Oct. 17
(1) A particle in a spherically symmetric potential is known to be in an eigenstate of ℓ^{2} and ℓ_{z} with eigenvalues $\hbar^{2} \ell(\ell+1)$ and $m \hbar$, respectively. Show that the expectation values between $|\ell m\rangle$ eigenstates satisfy

$$
\begin{gathered}
\left\langle\ell_{x}\right\rangle=\left\langle\ell_{y}\right\rangle=0 \text { and } \\
\left\langle\ell_{x}^{2}\right\rangle=\left\langle\ell_{y}^{2}\right\rangle=\frac{\left[\ell(\ell+1) \hbar^{2}-m^{2} \hbar^{2}\right]}{2}
\end{gathered}
$$

(2) Using the real-valued spherical harmonics defined as

$$
\begin{aligned}
& Y_{x}=\frac{1}{\sqrt{2}}\left(Y_{1,-1}-Y_{1,1}\right) \\
& Y_{y}=\frac{i}{\sqrt{2}}\left(Y_{1,1}+Y_{1,-1}\right) \\
& Y_{z}=Y_{1,0}
\end{aligned}
$$

evaluate each of the following:
(a) $\left\langle Y_{y}\right| \ell_{y}\left|Y_{y}\right\rangle$
(b) $\left\langle Y_{y}\right| \ell_{z}\left|Y_{y}\right\rangle$
(c) $\left\langle Y_{z}\right| \ell_{x}\left|Y_{z}\right\rangle$
(d) $\left\langle Y_{z}\right| \ell_{x}{ }^{2}+\ell_{y}{ }^{2}\left|Y_{z}\right\rangle$
(3) Locate the radial nodes of the $3 s$ orbital of the hydrogen atom. How do these compare to those of Ar^{17+} ?
(4) Calculate (a) the mean radius, (b) the mean square radius, and (c) the most probable radius of the $2 s$ orbital of a hydrogenic atom of atomic number Z. You will find the following integral useful:

$$
\int_{0}^{\infty} x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}}
$$

