(1) $\quad V(x)=\frac{1}{2} k_{2} x^{2}+\frac{1}{3!} k_{3} x^{3}$
(a)

$$
\begin{aligned}
& H^{(0)}=\frac{1}{2} k_{2} x^{2}, E_{v}^{(0)}=\hbar \omega(v+1 / 2), \psi_{v}^{(0)}== \\
&=|v\rangle \\
& H^{(1)}=\frac{1}{6} k_{3} x^{3} \\
& E_{v}^{(1)}=\langle v| \frac{1}{6} k_{3} x^{3}|v\rangle=\frac{1}{6} k_{3}\langle v| x^{3}|v\rangle \\
&=0 \text { by symmetry }
\end{aligned} \quad \begin{aligned}
E_{v}^{(2)}=\sum_{v^{\prime} \neq v} \frac{\left.\left|\left\langle v^{\prime}\right| \frac{1}{6} k_{3} x^{3}\right| v\right\rangle\left.\right|^{2}}{E_{v}^{(0)}-E_{v^{\prime}}^{(0)}}
\end{aligned}
$$

from $H \omega \neq 3, \quad x^{3}=\left(\frac{\hbar}{2 \mu \omega}\right)^{3 / 2}\left(a+a^{+}\right)\left(a+a^{+}\right)\left(a+a^{+}\right)$

$$
\begin{aligned}
& \left\langle v^{\prime}\right| x^{3}|v\rangle=\left(\frac{\hbar}{2 \mu \omega}\right)^{3 / 2}\left\{\sqrt{v(v-1)(v-2)} \delta_{v^{\prime}, v-3}\right. \\
& +3 v \sqrt{v} \delta_{v_{1}^{\prime} v-1}+3(v+1) \sqrt{v+1} \delta_{v_{1}^{\prime} v+1} \\
& \left.+\sqrt{(v+1)(v+2)(v+3)} \delta_{v^{\prime}, v+3}\right\}
\end{aligned}
$$

so $E_{v}^{(2)}=\frac{1}{36} k_{3}^{2}\left(\frac{\hbar}{2 \mu \omega}\right)^{3}\left\{\frac{v(v-1)(v-2)}{E_{v}^{(0)}-E_{v-3}^{(0)}}\right.$

$$
\begin{aligned}
& +\frac{9 v^{2} \cdot v}{E_{v}^{(0)}-E_{v-1}^{(0)}}+\frac{9(v+1)^{2}(v+1)}{E_{v}^{(0)}-E_{v+1}^{(0)}} \\
& \left.+\frac{(v+1)(v+2)(v+3)}{E_{v}^{(0)}-E_{v+3}^{(0)}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& E_{v}^{(0)}=\hbar \omega(v+1 / 2) \\
& E_{v}^{(0)}-E_{v-3}^{(0)}=\hbar \omega(v+1 / 2-(v-3)-1 / 2)=3 \hbar \omega \\
& E^{(0)}-E_{v-1}^{(0)}=\hbar \omega \\
& E_{v}^{(0)}-E_{v+1}^{(0)}=-\hbar \omega \\
& (0)-E_{v}^{(0)}-E_{v+3}^{(0)}=-3 \hbar \omega \\
& E_{v}^{(2)}=\frac{k_{3}^{2}}{36 \hbar \omega}\left(\frac{\hbar}{2 \mu \omega}\right)^{3}\left[\frac{v(v-1)(v-2)}{3}+9 v^{3}\right. \\
& \left.-9(v+1)^{3}-\frac{(v+1)(v+2)(v+3)}{3}\right]
\end{aligned}
$$

(1b) for $v=0$

$$
\begin{aligned}
v & =0 \\
E_{0}^{(2)} & =\frac{k_{3}^{2}}{36 \hbar \omega}\left(\frac{\hbar}{2 \mu \omega}\right)^{3}\left[-9(1)^{3}-\frac{6}{3}\right] \\
& =\frac{-k_{3}^{2}}{3 \hbar \omega}\left(\frac{\hbar}{2 \mu \omega}\right)^{3} \\
E_{0} & =E_{0}^{(0)}+E_{0}^{(2)}=\frac{\hbar \omega}{2}-\frac{k_{3}^{2}}{3 \hbar \omega}\left(\frac{\hbar}{2 \mu \omega}\right)^{3} \\
E_{1}^{(2)} & =\frac{k_{3}^{2}}{36 \hbar \omega}\left(\frac{\hbar}{2 \mu \omega}\right)^{3}\left[9(1)^{3}-9(2)^{3}-\frac{24}{3}\right] \\
& =\frac{k_{3}^{2}}{36 \hbar \omega}\left(\frac{\hbar}{2 \mu \omega}\right)^{3}(-71) \\
E_{1} & =\frac{3 \hbar \omega}{2}-71 \frac{k_{3}^{2}}{36 \hbar \omega}\left(\frac{\hbar}{2 \mu \omega}\right)^{3}
\end{aligned}
$$

(c) harmonic $V=0-1 ; \quad E_{1}^{(0)}-E_{0}^{(0)}=\frac{3}{2} \hbar \omega-\frac{1}{2} \hbar \omega=\hbar \omega$ anharmonic $v=0-1: \hbar \omega-70 \frac{k_{3}^{2}}{36 \hbar \omega}\left(\frac{\hbar}{2 \mu \omega}\right)^{3}$
(2)

Example - 1-dim. harmonic oscillate

$$
\hat{H}=-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d x^{2}}+\frac{1}{2} k x^{2}
$$

guess $\phi=\cos \alpha x$
where $\quad \frac{-T}{2 \alpha} \leq x \leq \frac{\pi}{2 \alpha}$
$\alpha \equiv$ variational parameter

$$
\begin{aligned}
E_{\text {trial }} & =\frac{\langle\phi| H|\phi\rangle}{\langle\phi \mid \phi\rangle}<\text { variational integral } \\
\langle\phi| H|\phi\rangle & =\int_{-\frac{\pi}{2 \alpha}}^{\pi / 2 \alpha} \cos \alpha x\left(\frac{-\hbar^{2}}{2 \mu} \frac{d^{2}}{d x^{2}}+\frac{1}{2} k x^{2}\right) \cos \alpha x d x \\
& =\frac{\pi \hbar^{2}}{4 \mu} \alpha+\left(\frac{\pi^{3}}{48}-\frac{\pi}{8}\right) \frac{k}{\alpha^{3}} \\
& \begin{aligned}
& \pi / 2 \alpha \\
&\langle\phi \mid \phi\rangle=\int_{-\pi / 2 \alpha} \cos ^{2} \alpha x d x=\frac{\pi}{2 \alpha}
\end{aligned}
\end{aligned}
$$

hence

$$
E_{\text {trial }}=\frac{\hbar^{2} \alpha^{2}}{2 \mu}+\left(\frac{\pi^{2}}{24}-\frac{1}{4}\right) \frac{k}{\alpha^{2}}
$$

\Rightarrow minimize Etrial with respect to α

$$
\frac{\partial E_{\text {trial }}}{\partial \alpha}=0=\frac{\hbar^{2} \alpha}{\mu}-2\left(\frac{\pi^{2}}{2^{4}}-\frac{1}{4}\right) \frac{k}{\alpha^{3}}
$$

so $\alpha_{\text {opt }}^{2}=\sqrt{\frac{2 \mu k}{\hbar^{2}}\left(\frac{\pi^{2}}{24}-\frac{1}{4}\right)}$
plug back into our expression for Atrial:

$$
\begin{aligned}
E_{\min } & =2 \hbar \sqrt{\frac{k}{2 \mu}\left(\frac{\pi^{2}}{24}-\frac{1}{4}\right)} \\
& =(1.14) \frac{1}{2} \hbar(k / \mu)^{1 / 2}
\end{aligned}
$$

$$
=(1.14) \frac{1}{2} \hbar \omega \quad 14 \% \text { too large }
$$

Note: the variation method can lead to accurate energies but does not insure an accurate wavefunction. The latte general requires careful choice about the functional form?
(3) Apply the linear variation function

$$
\phi=c_{1} x^{2}(L-x)+c_{2} x(L-x)^{2}
$$

to the 1-dim. particle in a box. Calculate the percent errous fo the $n=1$ ard $n=2$ energies. 1 Determine the coefficient c_{1} and c_{2} on $n=1$.
basis:

$$
\begin{aligned}
& \phi_{1}=x^{2}(L-x) \\
& \phi_{2}=x(L-x)^{2}
\end{aligned}
$$

Secular determinant:

$$
\left|\begin{array}{ll}
H_{11}-E S_{11} & H_{12}-E S_{12} \\
H_{21}-E S_{21} & H_{22}-E S_{22}
\end{array}\right|=0
$$

$$
\begin{aligned}
& H_{11}=\left\langle\phi_{1}\right| H\left|\phi_{1}\right\rangle \quad H_{22}=\left\langle\phi_{2}\right| H\left|\phi_{2}\right\rangle \\
& H_{12}=\left\langle\phi_{1}\right| H\left|\phi_{2}\right\rangle \quad H_{21}=\left\langle\phi_{2}\right| H\left|\phi_{1}\right\rangle \\
& S_{11}=\left\langle\phi_{1} \mid \phi_{1}\right\rangle, \quad S_{22}=\left\langle\phi_{2} \mid \phi_{2}\right\rangle, \\
& S_{12}=S_{21}=\left\langle\phi_{1} \mid \phi_{2}\right\rangle \\
& H=-\frac{1}{2} \frac{d^{2}}{d x^{2}} \quad \text { (a.u.) }
\end{aligned}
$$

$$
\begin{aligned}
H \phi_{1} & =-\frac{1}{2} \frac{d^{2}}{d x^{2}}\left[x^{2}(L-x)\right]=-\frac{1}{2} \frac{d}{d x}\left[-x^{2}+2 x L-2 x^{2}\right] \\
& =3 x-L \\
H \phi_{2} & =-\frac{1}{2} \frac{d^{2}}{d x^{2}}\left[x(L-x)^{2}\right]=-\frac{1}{2} \frac{d}{d x}\left[-2 x(L-x)+(L-x)^{2}\right] \\
& =2 L-3 x \\
\left\langle\phi_{1}\right| H\left|\phi_{1}\right\rangle & =\int_{0}^{L} x^{2}(L-x)(3 x-L) d x \\
& =\int_{0}^{L}\left(3 L x^{3}-L^{2} x^{2}-3 x^{4}+L x^{3}\right) d x \\
& =\left[\frac{3 L x^{4}}{4}-\frac{L^{2} x^{3}}{3}-\frac{3 x^{5}}{5}+\frac{L x^{4}}{4}\right]_{0}^{L} \\
& =\frac{L^{5}}{15} \\
\left\langle\phi_{2}\right| H\left|\phi_{2}\right\rangle & =\int_{0}^{L} x(L-x)^{2}(2 L-3 x) d x \\
& =\int_{0}^{L}\left(-3 x^{4}+8 L x^{3}-7 L^{2} x^{2}+2 L^{3} x\right) d x \\
& =\left[-\frac{3 x^{5}}{5}+\frac{8 L x^{4}}{4}-\frac{7 L^{2} x^{3}}{3}+\frac{2 L^{3} x^{2}}{2}\right]_{0}^{L} \\
& =\frac{L^{5}}{15}
\end{aligned}
$$

$$
\begin{aligned}
&\left\langle\phi_{1}\right| H\left|\phi_{2}\right\rangle=\int_{0}^{L} x^{2}(L-x)(2 L-3 x) d x \\
&=\int_{0}^{L}\left(3 x^{4}-5 L x^{3}+2 L^{2} x^{2}\right) d x \\
&=\left[\frac{3 x^{5}}{5}-\frac{5 L x^{4}}{4}+\frac{2 L^{2} x^{3}}{3}\right]_{0}^{L} \\
&=\frac{L^{5}}{60} \\
&\left\langle\phi_{2}\right| H\left|\phi_{1}\right\rangle=\int_{0}^{L} x\left(L-x^{2}\right)(3 x-L) d x \\
&=\int_{0}^{L}\left(3 x^{4}-7 L x^{3}+5 L^{2} x^{2}-L^{3} x\right) d x \\
&=\left[\frac{3 x^{5}}{5}-\frac{7 L x^{4}}{4}+\frac{5 L^{2} x^{3}}{3}-\frac{L^{3} x^{2}}{2}\right]_{0}^{L} \\
&=\frac{L^{5}}{60} \\
&=\left[\frac{x^{7}}{7}-\frac{2 L x^{6}}{6}+\frac{L^{2} x^{5}}{5}\right]_{0}^{L}= \\
& \text { should have known this was the same as H12 } \\
&\left\langle\phi_{1} \mid \phi_{1}\right\rangle=\int_{0}^{L} x^{4}(L-x)^{2} d x=\int_{0}^{L}\left(x^{6}-2 L x^{5}+L^{2} x^{4}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
&\left\langle\phi_{2} \mid \phi_{2}\right\rangle= \int_{0}^{L} x^{2}(L-x)^{4} d x= \\
&+\left[\frac{L^{2}(L-x)^{5}}{5}\right]_{0}^{L} \\
&= \frac{L^{7}}{105} \\
&\left\langle\phi_{1} \mid \phi_{2}\right\rangle= \int_{0}^{L} x^{3}(L-x)^{7} d x=\int_{0}^{L}\left(-x^{6}+3 L x^{5}-3 L^{2} x^{4}+L^{3} x^{3}\right) d x \\
&= {\left[-\frac{x^{7}}{7}+\frac{3 L x^{6}}{6}-\frac{3 L^{2} x^{5}}{5}+\frac{L^{3} x^{4}}{4}\right]_{0}^{L} } \\
&= \frac{L^{7}}{140} \\
& \frac{L^{5}}{15}-\frac{L^{7}}{105} E \quad \frac{L^{5}}{60}-\left.\frac{L^{7}}{140} E\right|_{0} ^{5}=0 \\
& \frac{L^{5}}{60}-\frac{L^{7}}{140} E \quad \frac{L^{5}}{15}-\left.\frac{L^{7}}{105} E\right|_{0}=0
\end{aligned}
$$

expands to:

$$
\frac{L^{10}}{240}-\frac{13 L^{12}}{12600} E+\frac{L^{14}}{25200} E^{2}=0
$$

roots:

$$
\frac{5}{L^{2}}, \frac{21}{L^{2}}
$$

exact results:

$$
\begin{aligned}
& E_{n}=\frac{n^{2} \pi^{2}}{2 L^{2}} \quad(\text { in a.4. }) \\
& E_{1}=4.935 L^{-2} \\
& E_{2}=19.739 L^{-2}
\end{aligned}
$$

? cross: 1.3 \% and 6.4 ?

For the coefficients, insert our approx. E, into the lIst secular eqn:

$$
\begin{gathered}
{\left[\frac{L^{5}}{15}-\frac{L^{7}}{105}\left(\frac{5}{L^{2}}\right)\right] C_{1}+\left[\frac{L^{5}}{60}-\frac{L^{7}}{140}\left(\frac{5}{L^{2}}\right)\right] C_{2}=0} \\
\left(\frac{1}{15}-\frac{L^{2}}{105} \cdot \frac{5}{L^{2}}\right) C_{1}+\left(\frac{1}{60}-\frac{L^{2}}{140} \cdot \frac{5}{L^{2}}\right) C_{2}=0 \\
0.01905 C_{1}-0.01905 C_{2}=0 \\
C_{1}=C_{2}
\end{gathered}
$$

the values of c_{1}, c_{2} are obtaining by normalization

$$
\begin{aligned}
\langle\phi \mid \phi\rangle & =1=\left\langle c_{1} \phi_{1}+c_{2} \phi_{2} \mid c_{1} \phi_{1}+c_{2} \phi_{2}\right\rangle \\
1= & c_{1}^{2}\left\langle\phi_{1} \mid \phi_{1}\right\rangle+2 c_{1} c_{2}\left\langle\phi_{1} \mid \phi_{2}\right\rangle+c_{2}^{2}\left\langle\phi_{2} \mid \phi_{2}\right\rangle \\
= & c_{1}^{2}\left\langle\phi_{1} \mid \phi_{1}\right\rangle+2 c_{1}^{2}\left\langle\phi_{1} \mid \phi_{2}\right\rangle+c_{1}^{2}\left\langle\phi_{2} \mid \phi_{2}\right\rangle \\
& \text { since } c_{1}=c_{2} \\
1= & c_{1}^{2}\left[\frac{L^{7}}{105}+\frac{2 L^{7}}{140}+\frac{L^{7}}{105}\right] \\
= & c_{1}^{2}\left[\frac{140}{14700} L^{7}+\frac{210}{14700} L^{7}+\frac{140}{14700} L^{7}\right] \\
= & L^{7} c_{1}^{2}\left(\frac{1}{30}\right) \\
c_{1} & \left.=c_{2}=\sqrt{\frac{30}{L^{7}}}\right]
\end{aligned}
$$

