HW \#6 solutions
(1) degenerate perturbation theory (1st-order)
(a) doubl-degenerte:

$$
\left|\begin{array}{ll}
H_{11}^{(1)}-E^{(1)} & H_{12}^{(1)} \\
H_{12}^{(1)} & H_{22}^{(1)}-E^{(1)}
\end{array}\right|=0
$$

but $H_{11}^{(1)}=4 b, H_{12}^{(1)}=2 b, H_{22}^{(1)}=6 b$

$$
\left|\begin{array}{cc}
4 b-E^{(1)} & 2 b \\
2 b & 6 b-E^{(1)}
\end{array}\right|=0
$$

expanding:

$$
\begin{aligned}
& \left(4 b-E^{(1)}\right)\left(6 b-E^{(1)}\right)-4 b^{2}=0 \\
& E^{(1)^{2}}-10 b E^{(1)}+20 b^{2}=0
\end{aligned}
$$

from quadratic equ: $\quad E^{(1)}=(5 \pm \sqrt{5}) b$
(b) For the ground state $E^{(1)}=(5-\sqrt{5}) b$ inserting into secular equ:

$$
\begin{gathered}
{[4 b-(5-\sqrt{5}) b] c_{1}+2 b c_{2}=0} \\
b(\sqrt{5}-1) c_{1}+2 b c_{2}=0 \\
c_{1}=\frac{2}{1-\sqrt{5}} c_{2}
\end{gathered}
$$

Fr the exalted state $E^{(1)}=(5+\sqrt{5}) b$

$$
\begin{gathered}
{[4 b-(5+\sqrt{5}) b] c_{1}+2 b c_{2}=0} \\
c_{1}=\frac{2}{1+\sqrt{5}} c_{2}
\end{gathered}
$$

in each case, $c_{1}^{2}+c_{2}^{2}=1$ since the basis is orthonormal
ground state: $\frac{4}{1.5279} c_{2}^{2}+c_{2}^{2}=1$
So $c_{2}=0.526 \quad$ oops forgot

$$
\begin{gathered}
\therefore c_{1}=-0.851 \\
4_{1}=-0.851 \\
\hline 24_{1}^{(0)}+0.524_{2}^{(0)}
\end{gathered}
$$

for the excited state:

$$
\begin{gathered}
\frac{4}{10.4+2} c_{2}^{2}+c_{2}^{2}=1 \\
c_{2}=0.851 \\
c_{1}=0.526 \\
4=0.5264_{1}^{(0)}+0.8514_{2}^{(0)}
\end{gathered}
$$

(1) Considu:

$$
\begin{aligned}
& \alpha(1) \alpha(2) \\
& \alpha(1) \beta(2) \\
& \beta(1) \alpha(2) \\
& \beta(1) \beta(2)
\end{aligned}
$$

(a)

$$
\begin{aligned}
& S_{z}=\Delta_{z}(1)+\alpha_{z}(2) \\
& S_{z} \alpha(1) \alpha(2)=\left(2 z(1)+\nu_{z}(2)\right) \alpha(1) \alpha(2) \\
&=\frac{1}{2} \hbar \alpha(1) \alpha(2)+\frac{1}{2} \hbar \alpha(1) \alpha(2)=\hbar \alpha(1) \alpha(2) \\
& S_{z} \alpha(1) \beta(2)=\frac{1}{2} \hbar \alpha(1) \beta(2)+\left(-\frac{1}{2} \hbar\right) \alpha(1) \beta(2)=0 \\
& S_{z} \beta(1) \alpha(2)=-\frac{1}{2} \hbar \beta(1) \alpha(2)+\frac{1}{2} \hbar \beta(1) \alpha(2)=0 \\
& S_{z} \beta(1) \beta(2)=-\frac{1}{2} \hbar \beta(1) \beta(2)-\frac{1}{2} \hbar \beta(1) \beta(2)=-\hbar \beta(1) \beta(2)
\end{aligned}
$$

\Rightarrow all eigenfunctins of $S_{z} \omega 1$ eigenvelues $\hbar, 0,0,-\hbar$

$$
\begin{aligned}
s^{2}(1,2)= & s^{2}(1)+s^{2}(2)+s_{-}(1) s_{+}(2)+s_{+}(1) s_{-}(2)+\alpha_{z}(1) s_{z}(2) \\
s^{2} \alpha(1) \alpha(2)= & s^{2}(1) \alpha(1) \alpha(2)+s^{2}(2) \alpha(1) \alpha(2)+s_{-}(1) s_{+}(2) \alpha(1) \alpha(2) \\
& +\alpha_{+}(1) s_{-}(2) \alpha(1) \alpha(2)+2 s_{z}(1) s_{z}(2) \alpha(1) \alpha(2) \\
= & \frac{1}{2}\left(\frac{1}{2}+1\right) \hbar^{2} \alpha(1) \alpha(2)+\frac{3}{4} \hbar^{2} \alpha(1) \alpha(2)+0 \\
& +0+2\left(\frac{1}{2} \hbar\right)\left(\frac{1}{2} \hbar\right) \alpha(1) \alpha(2) \\
= & 2 \hbar^{2} \alpha(1) \alpha(2)
\end{aligned}
$$

$\therefore \alpha(1) \alpha(2)$ is an eigenfenction $w / s=1$

$$
\text { eigenvalue }=2 \hbar^{2}
$$

likewise,

$$
\begin{aligned}
S^{2} \beta(1) \beta(2)= & \frac{3}{4} \hbar^{2} \beta(1) \beta(2)+\frac{3}{4} \hbar^{2} \beta(1) \beta(2)+0+0 \\
& +2\left(-\frac{1}{2} \hbar\right)\left(-\frac{1}{2} \hbar\right) \beta(1) \beta(2) \quad \begin{array}{l}
\text { eigenfunction }, s=1 \\
\text { eigenvalue }=2 \hbar^{2}
\end{array} \\
= & 2 \hbar^{2} \beta(1) \beta(2) \quad \\
S^{2} \alpha(1) \beta(2)= & \frac{3}{4} \hbar^{2} \alpha(1) \beta(2)+\frac{3}{4} \hbar^{2} \alpha(1) \beta(2) \\
& +(\hbar)(\hbar) \beta(1) \alpha(2)+0+2\left(\frac{1}{2} \hbar\right)\left(-\frac{1}{2} \hbar\right) \alpha(1) \beta(2) \\
= & \hbar^{2} \alpha(1) \beta(2)+\hbar^{2} \beta(1) \alpha(2)
\end{aligned}
$$

\Rightarrow not an eigenfunction

$$
\begin{aligned}
s^{2} \beta(1) \alpha(2) & =\frac{3}{4} \hbar^{2} \beta(1) \alpha(2)+\frac{3}{4} \hbar^{2} \beta(1) \alpha(2)+0 \\
& +(\hbar)(\hbar) \alpha(1) \beta(2)+2\left(-\frac{1}{2} \hbar\right)\left(\frac{1}{2} \hbar\right) \beta(1) \alpha(2) \\
& =\hbar^{2} \beta(1) \alpha(2)+\hbar^{2} \alpha(1) \beta(2)
\end{aligned}
$$

\Rightarrow not an eigenfunction
(b)

$$
\begin{aligned}
& s^{2}[\alpha(1) \beta(2)+\beta(1) \alpha(2)]=\hbar^{2}[\alpha(1) \beta(2)+\beta(1) \alpha(2) \\
&+\beta(1) \alpha(2)+\alpha(1) \beta(2)] \quad \text { (using results } \\
& \text { from port a) }
\end{aligned}
$$

\Rightarrow eigenfunction w/ $s=1$ eigenvalue $=2 \hbar^{2}$

$$
S^{2}[\alpha(1) \beta(2)-\beta(1) \alpha(2)]=0
$$

Sz gives zero in both cases
\Rightarrow eigenfunction w/ $\delta=0$
eigenvalue $=\theta \hbar^{2}$
(2)
obtain $\otimes_{1,0}$ from $\oplus_{1,-1}$

$$
\begin{aligned}
& \Theta_{1,0}=|1,0\rangle \quad \text { where } s=1, m_{s}=0 \\
& \otimes_{1,-1}=|1,-1\rangle \quad s=1, m_{s}=-1 \\
& S_{+}|1,-1\rangle=\hbar \sqrt{1(1+1)-(-1)(-1+1)}|1,0\rangle=\sqrt{2} \hbar \Theta_{1,0} \\
& |1,-1\rangle=\left|\frac{1}{2},-\frac{1}{2} ; \frac{1}{2},-\frac{1}{2}\right\rangle=\frac{\left.-\frac{1}{2}-\frac{1}{2}\right\rangle}{\text { cheese } \theta(1)=\frac{1}{2}} 1(2)=\frac{1}{2} \\
& m_{s}(1)=-\frac{1}{2} \quad m_{5}(2)=-\frac{1}{2} \\
& \left(s_{+}(1)+\alpha_{+}(2)\right)\left|-\frac{1}{2},-\frac{1}{2}\right\rangle=\hbar \sqrt{\frac{1}{2}\left(\frac{1}{2}+1\right)-\left(-\frac{1}{2}\right)\left(-\frac{1}{2}+1\right)}\left|\frac{1}{2},-\frac{1}{2}\right\rangle \\
& +\frac{\hbar}{\hbar} \sqrt{\frac{1}{2}\left(\frac{1}{2}+1\right)-\left(-\frac{1}{2}\right)\left(-\frac{1}{2}+1\right)}\left|-\frac{1}{2}, \frac{1}{2}\right\rangle \\
& =\hbar\left(\left|\frac{1}{2},-\frac{1}{2}\right\rangle+\left|-\frac{1}{2}, \frac{1}{2}\right\rangle\right) \\
& \Rightarrow \quad\left|\Theta_{10}=\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2},-\frac{1}{2}\right\rangle+\left|-\frac{1}{2}, \frac{1}{2}\right\rangle\right)\right. \\
& =\frac{1}{\sqrt{2}}[\alpha(1) \beta(2)+\beta(1) \alpha(2)]
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \Phi_{11}=\alpha(1) \alpha(2) \\
& \beta \oplus_{1-1}=\beta(1) \beta(2) \\
& \oplus_{10}=\frac{1}{\sqrt{2}}[\alpha(1) \beta(2)+\beta(1) \alpha(2)]
\end{aligned}
$$

let $\theta_{00}=c_{1} \alpha(1) \alpha(2)+c_{2} \beta(1) \beta(2)+c_{3} \alpha(1) \beta(2)+c_{4} \beta(1) \alpha(2)$ using Schmidt orthogondization:

$$
\begin{aligned}
\otimes_{00}= & c_{1} \alpha(1) \alpha(2)+c_{2} \beta(1) \beta(2)+c_{3} \alpha(1) \beta(2)+c_{4} \beta(1) \alpha(2) \\
& -\alpha(1) \alpha(2)\left\langle\alpha(1) \alpha(2) \mid c_{1} \alpha(1) \alpha(2)+c_{2} \beta(1) \beta(2)+\cdots\right\rangle \\
& -\beta(1) \beta(2)\left\langle\beta(1) \beta(2) \mid c_{1} \alpha(1) \alpha(2)+c_{2} \beta(1) \beta(2)+\cdots\right\rangle \\
& -\frac{1}{\sqrt{2}}[\alpha(1) \beta(2)+\beta(1) \alpha(2)]\left\langle\frac{1}{\sqrt{2}}[\alpha(1) \beta(2)+\beta(1) \alpha(2)]\right| c_{1} \alpha(1) \alpha(2) \\
& \left.+c_{2} \beta(1) \beta(2)+c_{3} \alpha(1) \beta(2)+c_{4} \beta(1) \alpha(2)\right\rangle
\end{aligned}
$$

remember: $\langle\alpha \mid \beta\rangle=0$

$$
\begin{aligned}
D_{00}= & c_{1} \alpha(1) \alpha(2)+c_{2} \beta(1) \beta(2)+c_{3} \alpha(1) \beta(2)+c_{4} \beta(1) \alpha(2) \\
& -\alpha(1) \alpha(2) \cdot c_{1}-\beta(1) \beta(2) \cdot c_{2} \\
& -\frac{1}{2}[\alpha(1) \beta(2)+\beta(1) \alpha(2)]\left(c_{3}+c_{4}\right) \\
= & c_{3} \alpha(1) \beta(2)+c_{4} \beta(1) \alpha(2)-\frac{1}{2} c_{3} \alpha(1) \beta(2)-\frac{1}{2} c_{3} \beta(1) \alpha(2) \\
& -\frac{1}{2} c_{4} \alpha(1) \beta(2)-\frac{1}{2} c_{4} \beta(1) \alpha(2) \\
= & \frac{1}{2} c_{3} \alpha(1) \beta(2)+\frac{1}{2} c_{4} \beta(1) \alpha(2)-\frac{1}{2} c_{3} \rho(1) \alpha(2)-\frac{1}{2} c_{4} \alpha(1) \beta(2)
\end{aligned}
$$

$$
\begin{aligned}
\Phi_{\infty} & =\frac{1}{2}\left[\left(c_{3}-c_{4}\right) \alpha(1) \beta(2)-\left(c_{3}-c_{4}\right) \beta(1) \alpha(2)\right] \\
& =\frac{1}{2} c[\alpha(1) \beta(2)-\beta(1) \alpha(2)]
\end{aligned}
$$

to normalize, $\quad\left(\frac{1}{2} c\right)^{2}=\frac{1}{2}$

$$
\begin{gathered}
\therefore \quad c=\sqrt{2} \\
\Phi_{00}=\frac{1}{\sqrt{2}}[\alpha(1) \beta(2)-\beta(1) \alpha(2)]
\end{gathered}
$$

