Chem 532: Problem Set #7

Due in class: Monday., Nov. 28th

- (1) Find all the RS term symbols that arise from each of the following electron configurations.
 - (a) $[Ar]4s^23d^94p$
 - (b) [Xe]6s5d4f
- (2) Give the number of states that belong to each of the following terms:
 - (a) ${}^{4}F$
- (b) ${}^{1}S$
- (c) ${}^{3}P$
- (d) 2D
- (3) Predict the ground state term symbol for each of the following atoms:
 - (a) As $([Ar]4s^24p^3)$ (b) $Zr([Kr]5s^24d^2)$
- (4) Consider the following electronic configuration of the Ce⁺ atom, [Xe]4f5d6s
 - (a) Determine all the possible Russell-Saunders terms for this configuration. Also give all the levels for the term with the highest L and S.
 - **(b)** For the one level of (a) with the highest possible total angular momentum, what are the expectation values of L^2 , S^2 , and J^2 ?
 - (c) Write the normalized Slater determinant wavefunction corresponding to the one $M_{J}=13/2$ state associated with part (a). Be very specific in your labeling of the spinorbitals and use full notation.
 - (d) Two of the four possible quartet spin functions are $\alpha_1 \alpha_2 \alpha_3$ ($M_s = +3/2$) and $\beta_1 \beta_2 \beta_3$ $(M_S = -3/2)$. Use the (3-electron) definitions of the S_- or S_+ operators in both coupled and uncoupled representations to determine one of the two remaining quartet spin functions (your choice).