Matrix Representation of Wavefunctions and Operators in Quantum Chemistry

The following is a consequence of expanding a general wavefunction in a complete set of eigenfunctions

For a complete, orthonormal basis set $\left\{\phi_{n}\right\},\left\langle\phi_{i} \mid \phi_{j}\right\rangle=\delta_{i j}$

For general state functions Ψ_{a} and Ψ_{b}, one can then exactly write:

$$
\begin{aligned}
& \left|\Psi_{a}\right\rangle=\sum_{k}\left|\phi_{k}\right\rangle a_{k} \\
& \left|\Psi_{b}\right\rangle=\sum_{l}\left|\phi_{l}\right\rangle b_{l}
\end{aligned}
$$

Furthermore, for a specified basis set it is sufficient to know just the coefficients a_{k} in order to calculate the function Ψ_{a} at any given point. The function Ψ_{a} can then also be completely specified by the column vector

$$
\mathbf{a}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)
$$

By analogy, the function Ψ_{b} can be represented by the column vector \mathbf{b}.

The norm of the function Ψ_{a} is the same as the absolute square of the vector a :

$$
\begin{aligned}
\left\langle\Psi_{a} \mid \Psi_{a}\right\rangle & =\sum_{k} \sum_{l} a_{k}^{*}\left\langle\phi_{k} \mid \phi_{l}\right\rangle a_{l} \\
& =\sum_{k} a_{k}^{*} a_{k}=\mathbf{a}^{\dagger} \cdot \mathbf{a}=|\mathbf{a}|^{2}
\end{aligned}
$$

where \mathbf{a}^{\dagger}, the adjoint of \mathbf{a}, is the row vector $\quad \mathbf{a}^{\dagger}=\left(\begin{array}{llll}a_{1}^{*} & a_{2}^{*} & \cdots & a_{n}^{*}\end{array}\right)$

For the overlap integral between Ψ_{a} and Ψ_{b} :

$$
\begin{aligned}
\left\langle\Psi_{a} \mid \Psi_{b}\right\rangle & =\sum_{k} \sum_{l} a_{k}^{*}\left\langle\phi_{k} \mid \phi_{l}\right\rangle b_{l} \\
& =\sum_{k} a_{k}^{*} b_{k}=\mathbf{a}^{\dagger} \cdot \mathbf{b}
\end{aligned}
$$

Thus integration in this basis representation will be replaced by a scalar or inner product.

Now assume that application of some operator $\hat{\mathrm{A}}$ to Ψ_{a} results in the function Ψ_{b} :

$$
\left|\Psi_{b}\right\rangle=\hat{\mathrm{A}}\left|\Psi_{a}\right\rangle
$$

In terms of our basis set,

$$
\left|\Psi_{b}\right\rangle=\sum_{l}\left|\phi_{l}\right\rangle b_{l}=\sum_{k} \hat{\mathrm{~A}}\left|\phi_{k}\right\rangle a_{k}
$$

A particular coefficient b_{n} in the definition of Ψ_{b} is obtained by multiplication on the left by $\left\langle\phi_{n}\right|$:

$$
\begin{aligned}
\sum_{l}\left\langle\phi_{n} \mid \phi_{l}\right\rangle b_{l} & =b_{n} \\
& =\left\langle\phi_{n} \mid \Psi_{b}\right\rangle=\sum_{k}\left\langle\phi_{n}\right| \hat{\mathrm{A}}\left|\phi_{k}\right\rangle a_{k} \\
& =\sum_{k} A_{n k} a_{k}
\end{aligned}
$$

or in matrix notation: $\mathbf{b}=\mathbf{A} \cdot \mathbf{a}$
Thus the operator \hat{A} becomes the matrix \mathbf{A} in the basis representation with matrix elements $A_{i j}$, and the effect of an operator acting on a function is transformed to a matrixvector multiplication.

A hermitian operator corresponds to a hermitian matrix with the property

$$
A_{i j}=A_{j i}^{*}
$$

or $\mathbf{A}=\mathbf{A}^{\dagger}$

Consider a 2nd operator $\hat{\mathrm{B}}$ acting on Ψ_{b} to yield another function Ψ_{c} that can be represented by the vector \mathbf{c} in our basis:

$$
\left|\Psi_{c}\right\rangle=\hat{\mathrm{B}}\left|\Psi_{b}\right\rangle=\hat{\mathrm{B}} \hat{\mathrm{~A}}\left|\Psi_{a}\right\rangle
$$

expansion gives:

$$
\begin{aligned}
\left|\Psi_{c}\right\rangle & =\sum_{i}\left|\phi_{i}\right\rangle c_{i}=\sum_{l} \hat{\mathrm{~B}}\left|\phi_{l}\right\rangle b_{l} \\
& =\sum_{l} \sum_{k} B\left|\phi_{l}\right\rangle\left\langle\phi_{l}\right| \hat{\mathrm{A}}\left|\phi_{k}\right\rangle a_{k}
\end{aligned}
$$

The coefficients c_{j} are obtained by multiplication on the left with $\left\langle\phi_{j}\right|$:

$$
\begin{aligned}
c_{j} & =\left\langle\phi_{j} \mid \Psi_{c}\right\rangle \\
& =\sum_{l} \sum_{k}\left\langle\phi_{j}\right| \hat{\mathrm{B}}\left|\phi_{l}\right\rangle\left\langle\phi_{l}\right| \hat{\mathrm{A}}\left|\phi_{k}\right\rangle a_{k} \\
& =\sum_{l} \sum_{k} B_{j l} A_{l k} a_{k}
\end{aligned}
$$

which in matrix notation is: $\quad \mathbf{c}=\mathbf{B} \cdot \mathbf{b}=\mathbf{B} \cdot \mathbf{A} \cdot \mathbf{a}$
So the operator product $\hat{B} \hat{A}$ becomes the matrix product $\mathbf{B} \cdot \mathbf{A}$ in the matrix representation.

Of course all of the above is strictly valid only for complete basis sets. For a finite basis set of M functions, $\left\langle\phi_{i}\right| \hat{\mathrm{A}} \hat{\mathrm{B}}\left|\phi_{j}\right\rangle \neq \sum_{k-1}^{M}\left\langle\phi_{i}\right| \hat{\mathrm{A}}\left|\phi_{k}\right\rangle\left\langle\phi_{k}\right| \hat{\mathrm{B}}\left|\phi_{j}\right\rangle$. The usage of finite basis sets in approximate methods of quantum chemistry will be discussed later in this course.

Expectation values in the matrix representation

$$
\begin{aligned}
\left\langle\Psi_{a}\right| \hat{\mathrm{A}}\left|\Psi_{a}\right\rangle & =\sum_{k} \sum_{l} a_{k}^{*}\left\langle\phi_{k}\right| \hat{\mathrm{A}}\left|\phi_{l}\right\rangle a_{l} \\
& =\mathbf{a}^{\dagger} \cdot \mathbf{A} \cdot \mathbf{a}
\end{aligned}
$$

Matrix element of \hat{A}

$$
\begin{aligned}
\left\langle\Psi_{a}\right| \hat{\mathrm{A}}\left|\Psi_{b}\right\rangle & =\sum_{k} \sum_{l} a_{k}^{*}\left\langle\phi_{k}\right| \hat{\mathrm{A}}\left|\phi_{l}\right\rangle b_{l} \\
& =\mathbf{a}^{\dagger} \cdot \mathbf{A} \cdot \mathbf{b}
\end{aligned}
$$

The unit operator (resolution of the identity) in a complete basis set:
$\hat{\mathrm{I}}=\sum_{k}\left|\phi_{k}\right\rangle\left\langle\phi_{k}\right|$
leads to the unit matrix I :
$I_{i j}=\left\langle\phi_{i}\right| \hat{\mathrm{I}}\left|\phi_{j}\right\rangle=\sum_{k}\left\langle\phi_{i} \mid \phi_{k}\right\rangle\left\langle\phi_{k} \mid \phi_{j}\right\rangle=\delta_{i j}$

Acknowledgements:

This document is a poor translation of the original lecture notes in German prepared by Prof. Dr. H.-J. Werner, Institut für Theoretische Chemie, Universität Stuttgart. Any errors are solely the product of the present author.

