
Matrix Representation of Wavefunctions and Operators in Quantum Chemistry 

 

The following is a consequence of expanding a general wavefunction in a complete set of 

eigenfunctions 

 

For a complete, orthonormal basis set φn{ } ,  φi φ j = δ ij  

 

For general state functions Ψa and Ψb, one can then exactly write: 

  
Ψa = φk ak

k
∑

Ψb = φl bl
l
∑

 

Furthermore, for a specified basis set it is sufficient to know just the coefficients ak in 

order to calculate the function Ψa at any given point. The function Ψa can then also be 

completely specified by the column vector 
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By analogy, the function Ψb can be represented by the column vector b. 

 

The norm of the function Ψa is the same as the absolute square of the vector a : 

Ψa Ψa = ak
* φk φl al

l
∑

k
∑

= ak
*ak = a

k
∑ † ⋅a = a

2  

where a† , the adjoint of a, is the row vector    a† = a1
* a2

*  an
*( )  
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For the overlap integral between Ψa and Ψb : 

 
Ψa Ψb = ak

* φk φl bl
l
∑

k
∑

= ak
*bk = a

k
∑ † ⋅ b

 

Thus integration in this basis representation will be replaced by a scalar or inner product. 

 

Now assume that application of some operator Â  to Ψa results in the function Ψb : 

  Ψb = Â Ψa  

In terms of our basis set, 

 Ψb = φl
l
∑ bl = Â φk

k
∑ ak  

A particular coefficient bn in the definition of Ψb is obtained by multiplication on the left 

by φn  : 

φn φl bl
l
∑ = bn

= φn Ψb = φn Â φk ak
k
∑

= Ankak
k
∑

 

or in matrix notation:  b = A ⋅a  

Thus the operator Â  becomes the matrix A in the basis representation with matrix 

elements Aij, and the effect of an operator acting on a function is transformed to a matrix-

vector multiplication. 

 

A hermitian operator corresponds to a hermitian matrix with the property 

 Aij = Aji
*  

or  A = A†  
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Consider a 2nd operator B̂  acting on Ψb to yield another function Ψc that can be 

represented by the vector c in our basis: 

 Ψc = B̂ Ψb = B̂Â Ψa  

expansion gives: 

 
Ψc = φi ci = B̂ φl bl

l
∑

i
∑

= B φl φl Â φk ak
k
∑

l
∑

 

The coefficients cj are obtained by multiplication on the left with φ j   : 

c j = φ j Ψc

= φ j B̂ φl
k
∑ φl Â φk ak

l
∑

= BjlAlkak
k
∑

l
∑

 

which in matrix notation is:    c = B ⋅b = B ⋅A ⋅a  

So the operator product B̂Â  becomes the matrix product B ⋅A  in the matrix 

representation. 

 

Of course all of the above is strictly valid only for complete basis sets.  For a finite basis 

set of M functions, φi ÂB̂ φ j ≠ φi Â φk φk B̂ φ j
k−1

M

∑  .  The usage of finite basis sets in 

approximate methods of quantum chemistry will be discussed later in this course. 

 

Expectation values in the matrix representation 

Ψa Â Ψa = ak
* φk Â φl al

l
∑

k
∑

= a† ⋅A ⋅a
 

 

Matrix element of Â   

Ψa Â Ψb = ak
* φk Â φl bl

l
∑

k
∑

= a† ⋅A ⋅b
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The unit operator (resolution of the identity) in a complete basis set: 

 

Î = φk φk
k
∑  

 

leads to the unit matrix  I : 

 

Iij = φi Î φ j = φi φk φk φ j
k
∑ = δ ij  
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