Examples of an Optimization Scheme HOCl \rightarrow TS \rightarrow HClO

Finding the HOCI Minima

Initial guess: $r(OH)=1.818 a_{O}$; $r(ClO)=3.197 a_{O}$; $\theta=102.8^{\circ}$

SCF/cc-pVDZ gradients and Hessian (a.u. & radians) :

$$\mathbf{g}_{i} = \begin{bmatrix} 0.0047 \\ 0.0129 \\ -0.0040 \end{bmatrix} \qquad \mathbf{H}_{i} = \begin{bmatrix} 0.2904 & -0.0101 & 0.0609 \\ -0.0101 & 0.5582 & -0.0034 \\ 0.0609 & -0.0034 & 0.2161 \end{bmatrix} \qquad \mathbf{r(ClO)}$$

The Newton-Raphson step is defined by:

$$\Delta \mathbf{R} = -\mathbf{H}^{-1} \mathbf{g} = \begin{bmatrix} -0.022 \\ -0.023 \\ 0.024 \end{bmatrix}$$

The steepest descent step is defined by:

$$\Delta \mathbf{R} = -\mathbf{g}$$
 (see above)

Note the difference using curvature info makes

Diagonalization of the initial Hessian

Eigenvalues:
$$\begin{bmatrix}
 0.559 \\
 0.324 \\
 0.182
 \end{bmatrix}$$
Eigenvectors: $\begin{bmatrix}
 -0.042 & 0.871 & -0.490 \\
 0.999 & 0.045 & -0.005 \\
 -0.017 & 0.490 & 0.872
 \end{bmatrix}$ r(ClO)r(OH) θ (HOCl)

(nth column of the eigenvector matrix corresponds to the nth eigenvalue)

After optimization to the HOCl minimum: $r(OH)=1.795 a_O$; $r(ClO)=3.176 a_O$; $\theta=104.2^{\circ}$

$$\mathbf{g} = \begin{bmatrix} 0.0 \\ 0.0 \\ 0.0 \end{bmatrix} \qquad \mathbf{H} = \begin{bmatrix} 0.3056 & -0.0107 & 0.0601 \\ -0.0107 & 0.6053 & -0.0034 \\ 0.0601 & -0.00339 & 0.2146 \end{bmatrix}$$

Diagonalization of the final Hessian (sorry, the order changed):

Eigenvalues:	0.335		0.894	-0.445	-0.039
	0.185	Eigenvectors:	0.041	-0.004	0.999
	0.606		0.445	0.895	-0.015

Note: these are not related to the vibrational frequencies since we have not scaled by the masses

At the optimized HClO minimum: r(OH)=4.599 a_o ; r(ClO)=3.470 a_o ; θ =31.1°

$$\mathbf{H} = \begin{bmatrix} 0.0417 & -0.0481 & -0.1765 \\ -0.0481 & 0.1688 & 0.7747 \\ -0.1765 & 0.7747 & 4.3661 \end{bmatrix}$$

Diagonalization of the Hessian:

relatively large eigenvalue indicates a large sensitivity for changes in this coordinate

In HClO coordinates: r(HCl)=2.423 a_O ; r(ClO)=3.470 a_O ; θ =101.1°

Diagonalization of the Hessian:

	0.357		0.016	0.975	0.220	r(ClO)
Eigenvalues:	0.025	Eigenvectors:	1.000	-0.021	0.017	r(HCl)
	0.112		-0.022	-0.220	0.975	θ(HClO)

C10

Optimization to the isomerization transition state

Initial guess geometry: r(OH)=3.067
$$a_0$$
; r(ClO)=3.318 a_0 ; θ (HOCl)=44.9°
 H_0

Initial gradient and Hessian:

	- 0.0392		0.1490	0.0997	0.3311
$\mathbf{g}_1 =$	- 0.0131	$\mathbf{H}_{1} =$	0.0997	0.0134	0.4407
	0.0166		0.3311	0.4407	2.5583

Note that it's certainly not obvious that the initial Hessian has the correct form After diagonalization, however (i.e., a new coordinate system):

Eigenvalues:
$$\begin{bmatrix}
 -0.071 \\
 0.113 \\
 2.679
 \end{bmatrix}$$
Eigenvectors: $\begin{bmatrix}
 -0.238 & 0.962 & 0.134 \\
 0.962 & 0.215 & 0.167 \\
 -0.131 & -0.169 & 0.977
 \end{bmatrix}$

Now, one sees that we do indeed have the correct number of negative eigenvalues

Optimizing to the TS

Newton-Raphson step in internal coordinates:

 $\Delta \mathbf{R} = -\mathbf{H}^{-1} \mathbf{g} = \begin{bmatrix} 0.386 \\ 0.008 \\ -0.058 \end{bmatrix} \begin{array}{c} r(\text{CIO}) \\ r(\text{OH}) \\ \theta(\text{HOCI}) \end{array}$ i.e., stretch the CIO & OH distances and contract the angle

Or analogously in the coordinates that diagonalized the Hessian: $\Delta \mathbf{R} = \sum_{k=1}^{3} -\frac{\mathbf{v}_{k}^{T} \mathbf{g} \mathbf{v}_{k}}{\lambda_{k}}$

where \mathbf{v}_k is the kth column of the eigenvector matrix and λ_k is the associated eigenvalue

This results in a walk <u>uphill</u> along the reaction path (along the gradient, $\lambda_k < 0$) and <u>downhill</u> along the other coordinates orthogonal to the path (in directions opposite to their gradients, $\lambda_k > 0$).