Examples of an Optimization Scheme $\mathrm{HOCl} \rightarrow$ TS $\rightarrow \mathrm{HClO}$

Finding the HOCl Minima

Initial guess: $\mathrm{r}(\mathrm{OH})=1.818 a_{O} ; \mathrm{r}(\mathrm{ClO})=3.197 a_{O} ; \theta=102.8^{\circ}$

SCF/cc-pVDZ gradients and Hessian (a.u. \& radians) :
$\mathbf{g}_{\mathbf{i}}=\left[\begin{array}{c}0.0047 \\ 0.0129 \\ -0.0040\end{array}\right] \quad \mathbf{H}_{\mathrm{i}}=\left[\begin{array}{ccc}0.2904 & -0.0101 & 0.0609 \\ -0.0101 & 0.5582 & -0.0034 \\ 0.0609 & -0.0034 & 0.2161\end{array}\right] \quad \begin{aligned} & \mathrm{r}(\mathrm{ClO}) \\ & \mathrm{r}(\mathrm{OH}) \\ & \theta(\mathrm{HOCl})\end{aligned}$

The Newton-Raphson step is defined by:
The steepest descent step is defined by:

$$
\Delta \mathbf{R}=-\mathbf{H}^{-1} \mathbf{g}=\left[\begin{array}{c}
-0.022 \\
-0.023 \\
0.024
\end{array}\right]
$$

$$
\Delta \mathbf{R}=-\mathbf{g}(\text { see above })
$$

Note the difference using curvature info makes

Diagonalization of the initial Hessian
Eigenvalues: $\left[\begin{array}{c}0.559 \\
0.324 \\
0.182\end{array}\right] \quad$ Eigenvectors: \(\left[\begin{array}{ccc}-0.042 \& 0.871 \& -0.490

0.999 \& 0.045 \& -0.005

-0.017 \& 0.490 \& 0.872\end{array}\right]\)| $r(\mathrm{ClO})$ |
| :--- |
| $r(\mathrm{OH})$ |
| $\theta(\mathrm{HOCl})$ |

(nth column of the eigenvector matrix corresponds to the nth eigenvalue)

After optimization to the HOCl minimum: $\mathrm{r}(\mathrm{OH})=1.795 a_{o} ; \mathrm{r}(\mathrm{ClO})=3.176 a_{O} ; \theta=104.2^{\circ}$

$$
\mathbf{g}=\left[\begin{array}{l}
0.0 \\
0.0 \\
0.0
\end{array}\right] \quad \mathbf{H}=\left[\begin{array}{ccc}
0.3056 & -0.0107 & 0.0601 \\
-0.0107 & 0.6053 & -0.0034 \\
0.0601 & -0.00339 & 0.2146
\end{array}\right]
$$

Diagonalization of the final Hessian (sorry, the order changed):
Eigenvalues: $\left[\begin{array}{c}0.335 \\ 0.185 \\ 0.606\end{array}\right] \quad$ Eigenvectors: $\left[\begin{array}{ccc}0.894 & -0.445 & -0.039 \\ 0.041 & -0.004 & 0.999 \\ 0.445 & 0.895 & -0.015\end{array}\right]$

Note: these are not related to the vibrational frequencies since we have not scaled by the masses

At the optimized HClO minimum: $\mathrm{r}(\mathrm{OH})=4.599 a_{O} ; \mathrm{r}(\mathrm{ClO})=3.470 a_{O} ; \theta=31.1^{\circ}$

$$
\mathbf{H}=\left[\begin{array}{ccc}
0.0417 & -0.0481 & -0.1765 \\
-0.0481 & 0.1688 & 0.7747 \\
-0.1765 & 0.7747 & 4.3661
\end{array}\right]
$$

Diagonalization of the Hessian:
Eigenvalues: $\left[\begin{array}{l}0.016 \\ 0.049 \\ 4.512\end{array}\right] \quad$ Eigenvectors: $\left[\begin{array}{ccc}0.663 & 0.747 & -0.041 \\ 0.741 & -0.648 & 0.176 \\ -0.105 & 0.147 & 0.984\end{array}\right] \begin{aligned} & r(\mathrm{ClO}) \\ & r(\mathrm{OH}) \\ & \theta(\mathrm{HOCl})\end{aligned}$
relatively large eigenvalue indicates a large sensitivity for changes in this coordinate

In HClO coordinates: $\mathrm{r}(\mathrm{HCl})=2.423 a_{o} ; \mathrm{r}(\mathrm{ClO})=3.470 a_{o} ; \theta=101.1^{\circ}$
Diagonalization of the Hessian:
Eigenvalues: $\left[\begin{array}{l}0.357 \\ 0.025 \\ 0.112\end{array}\right] \quad$ Eigenvectors: $\left[\begin{array}{rrr}0.016 & 0.975 & 0.220 \\ 1.000 & -0.021 & 0.017 \\ -0.022 & -0.220 & 0.975\end{array}\right] \begin{aligned} & \mathrm{r}(\mathrm{ClO}) \\ & \mathrm{r}(\mathrm{HCl}) \\ & \theta(\mathrm{HClO})\end{aligned}$

Optimization to the isomerization transition state

Initial guess geometry: $\mathrm{r}(\mathrm{OH})=3.067 a_{O} ; \mathrm{r}(\mathrm{ClO})=3.318 a_{O} ; \theta(\mathrm{HOCl})=44.9^{\circ}$

Initial gradient and Hessian:

$$
\mathbf{g}_{\mathrm{i}}=\left[\begin{array}{c}
-0.0392 \\
-0.0131 \\
0.0166
\end{array}\right] \quad \mathbf{H}_{\mathrm{i}}=\left[\begin{array}{ccc}
0.1490 & 0.0997 & 0.3311 \\
0.0997 & 0.0134 & 0.4407 \\
0.3311 & 0.4407 & 2.5583
\end{array}\right]
$$

Note that it's certainly not obvious that the initial Hessian has the correct form After diagonalization, however (i.e., a new coordinate system):
Eigenvalues: $\left[\begin{array}{c}-0.071 \\ 0.113 \\ 2.679\end{array}\right] \quad$ Eigenvectors: $\left[\begin{array}{ccc}-0.238 & 0.962 & 0.134 \\ 0.962 & 0.215 & 0.167 \\ -0.131 & -0.169 & 0.977\end{array}\right]$

Now, one sees that we do indeed have the correct number of negative eigenvalues

Optimizing to the TS

Newton-Raphson step in internal coordinates:
$\Delta \mathbf{R}=-\mathbf{H}^{-1} \mathbf{g}=\left[\begin{array}{c}0.386 \\ 0.008 \\ -0.058\end{array}\right] \begin{aligned} & \mathrm{r}(\mathrm{ClO}) \\ & \mathrm{r}(\mathrm{OH}) \\ & \theta(\mathrm{HOCl})\end{aligned} \begin{aligned} & \text { i.e., stretch the ClO \& OH distances and } \\ & \text { contract the angle }\end{aligned}$
Or analogously in the coordinates that diagonalized the Hessian: $\quad \Delta \mathbf{R}=\sum_{k=1}^{3}-\frac{\mathbf{v}_{k}^{\mathrm{T}} \mathbf{g} \mathbf{v}_{k}}{\lambda_{k}}$ where \mathbf{v}_{k} is the kth column of the eigenvector matrix and λ_{k} is the associated eigenvalue

This results in a walk uphill along the reaction path (along the gradient, $\lambda_{\mathrm{k}}<0$) and downhill along the other coordinates orthogonal to the path (in directions opposite to their gradients, $\lambda_{\mathrm{k}}>0$).

