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The use of time-dependent density functional theory (TDDFT) is considered for the determination of electronic
excitation energies. Using beryllium and methylene as examples, we highlight (i) problems with Rydberg
excitations arising from neglect of the integer discontinuity in the potential ; (ii) the absence of pure double
excitations in calculations using conventional exchange-correlation functionals ; (iii) quantitative di†erences
between excitation energies determined using TDDFT and the “delta SCFÏ method ; (iv) non-additivity of
excitation energies calculated using TDDFT from di†erent electronic states ; (v) an apparent failure to predict
single excitations to states that are lower than the reference states and (vi) the di†erence in quality between
excitations to singlet and triplet states.

1 Introduction

KohnÈSham density functional theory has become a powerful
tool in computational chemistry, being recognised as an inex-
pensive and reasonably accurate method for the determi-
nation of ground state quantities. More recently it has also
been used through response theory for the calculation of verti-
cal excitation energies. In this paper we examine several issues
relating to the determination of excitation energies using time-
dependent density functional theory (TDDFT).

At its simplest, TDDFT is the translation of the random
phase approximation (RPA) into DFT. It is best understood
in terms of the response of a molecule to a time dependent
electromagnetic Ðeld, for which the electric Ðeld is cos ut.EuThere have been a number of active scientists in this area. In
particular we highlight the work of Bauernschmitt and Ahl-
richs,1,2 Casida and coworkers,3,4 Baerends and coworkers5,6
and Gross and coworkers.7,8 TDDFT is now a standard algo-
rithm in the packages TURBOMOL,9 ADF,10 GAUSSIAN11
and CADPAC.12

2 The determination of excitation energies

In the standard time-dependent perturbation theory of
quantum mechanics, the linear response is measured by the
change in the expectation value of a one electron operator,qjrepresented by when a time-dependent electricqü j\ &

i
f üj(ri),Ðeld cos ut is appliedEuk

qj \ qj0 ] pjk([u ; u)Euk cos ut (1)

The perturbation theory gives the following expression for the
tensor components pjk
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¤ Dedicated to Professor Reinhart Ahlrichs on the occasion of his
60th birthday.

where K denotes all electronic states with energy 0W
K
;

denotes the ground state and u
K

\ W
K

[ W0 .
Let the state 0 be a singlet state. If the one-electron oper-

ator has no explicit spin dependence then excitations to
singlet states will be obtained as poles of the associated tensor.
For example, if the operator is the dipole operator f üj\ rj ,
then singlet excitations would be obtained as the poles of the
frequency dependent polarisability. Furthermore, this theory
states that all singlet excitations are observed, because
(neglecting spatial symmetry) they all have non-zero matrix
elements with the state 0. Excitations to triplet states will not,
however, be obtained since the numerator will vanish by spin
symmetry. These excitations must be determined as the poles
of a di†erent tensor, associated with a one-electron operator
whose explicit spin-dependence prevents the numerator from
vanishing. An example is the spinÈorbit operator f üj\ lüj sü

z
.

All excitation energies (single, double, etc.) can therefore be
determined through the poles of appropriate tensor quantities,
each expressed in terms of just one-electron operators. Given
the one-electron nature of DFT, it would therefore appear
that this method should also be able to predict all excitations,
without the need to investigate any non-linear response
properties. We now consider the linear response in DFT.

The basic theorem of Hohenberg and Kohn13 states that
the electron density gives all of the required information to
determine the Hamiltonian and its wavefunctions. Such an
observation includes the presence of a static electric Ðeld, but
not the presence of a static magnetic Ðeld, for which is it also
necessary to know the electric current j(r). Furthermore know-
ledge of o and j do not give information on u (because o and j
depend upon the product of the wavefunction with its
conjugate), if the electromagnetic Ðeld has a time dependence.
The deduction from all of this is that to obtain excitation
energy predictions from DFT, we should include an energy
functional dependence on both j and u. Exchange-correlation
functionals in use today do not include this dependence,
because the nature of this dependence is not known. Neglect
of a dependence on u is often called the adiabatic approx-
imation.1 The following analysis is therefore appropriate for
an exchange-correlation functional with no j- or u-
dependence.
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The theory commences1 from the time-dependent Frenkel
variation of the KohnÈSham equations

A
/

a

K
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K
/

i

B
\ 0 (3)

where the unperturbed orbitals satisfy
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p
oFKS[ e

q
o/

q
)\ 0 (4)

We can already make an important observation of KohnÈ
Sham theory. In continuum DFT theory (by this we mean one
where the potential varies smoothly as a function of the
number of electrons, i.e. the functional has no orbital
dependence) using in particular generalised gradient approx-
imation (GGA) exchange-correlation functionals, all the
orbitals are eigenfunctions of the same KohnÈSham operator,
which involves an (N [ 1) electron potential. We think that
this is one reason why TDDFT in practice is often successful
in contrast to TDHF theory (RPA), where the unoccupied
orbitals are the eigenfunctions of an N electron potential. The
matrix element of FKS is given by

(/
p
oFKS o/

q
)\ (/

p
o h o/

q
)] (pq o o)]

P
/

p
* v

xc
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q
dr (5)

where is the exchange-correlation potential, the functionalv
xcderivative of the exchange-correlation energy E

xc
[o].

We commence by considering singlet excitations from a
closed-shell ground system, which are obtained from the poles
of the frequency dependent polarisability. The orbitals are
expanded as

/
p
\ /

p
0 ] 12Euk[Urp

k (u)eiut] U
rp
k ([u)e~iut]/

r
0 ] É É É (6)

where the coefficients are to be found. Note that thisU
rp
k

expansion is an orbital expansion ; it is not possible to intro-
duce products of orbitals into this expansion. Orthonormality
and the fact that the electron density involves a trace imply
that

U
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k (u)] U

pq
k ([u)\ 0 (7)
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The next step is to substitute this expansion into the FrenkelÈ
KohnÈSham equation, and equate the coefficients of Euk eBiut
to zero. This gives
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Here The notation d/do includes variationsP
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in o and derivatives of o. One then proceeds straightforwardly
by deÐning

Z
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The coupled equations to determine Zk are

(h2 h1[ u2I)Zk \ [2h2 Pk (13)

and the frequency dependent polarisability is given by

akl([u ; u)\ [2P
ai
k Z

ai
l (14)

The poles of u) (i.e. the singlet excitation energies) areakl([u ;
therefore determined from

det o h2 h1[ u2I o\ 0 (15)

and so the key to the success of the theory is the evaluation of
the hessian h1

h1, ai, bj\ (e
b
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and the diagonal (because of the omission of any j-
dependence) hessian h2

h2, ai, bj\ (e
b
[ e

j
) d

ai, bj (17)

It is immediately clear from this analysis that the number of
excitation energies calculated is just whereNocc ] Nvirt , Noccand denote the number of occupied and virtual KohnÈNvirtSham orbitals, respectively. In other words, only single excita-
tions are determined in this theory. Double, and higher
excitations, are absent. Presumably, if an explicit dependence
on u was introduced then these additional excitations would
be introduced. One must, however, be very careful in this
whole discussion ; although the eigenvalues may strictly be
related to excitation energies, this does not follow for the
eigenvectors. Only by arguments such as “this approach is
closely related to single excitation conÐguration interactionÏ
can a meaning be attached to them. Indeed we know that
local exchange terms introduce non-dynamical correlation,
and it has been observed that multiconÐgurational excited
states are well predicted by this DFT, and so we should not be
surprised in such cases that the DFT eigenvector does not
look like the ab initio eigenvector.

The above formulae for and are appropriate for exci-h1 h2tations from a closed-shell singlet ground state to excited
singlet states. In order to determine excitations to excited
triplet states it is necessary to repeat the theory using the
appropriate spin-dependent one-electron operator. In that
case, the poles are again determined from an expression of the
form (15), although the hessian involves a di†erent com-h1bination of terms (in particular di†erences rather than sums)
arising from the exchange-correlation functional and it does
not involve the integral (ai o bj). The accuracy of these triplet
excitations will therefore more critically depend upon the
accuracy of the exchange-correlation functional. Once again
only single excitations will be obtained.

It is possible to formulate the linear response problem in a
more general unrestricted framework, as detailed in ref. 14. In
this case the zero-determinant condition for calculating the
poles of the frequency dependent polarisability yields both the
singlet and triplet excitation energies. This arises because the
one-electron operator does not enter the expression from the
poles, but is rather on the right hand side of the coupled equa-
tions.

This is the straightforward theory of TDDFT as practised
today, and it is obvious that its success crucially depends
upon the quality of the virtual orbitals and eigenvalues. The
incorrect asymptotic behaviour of conventional continuum
functionals can lead to signiÐcant errors in these quantities. In
practical calculations, it is therefore necessary to asymp-
totically correct the potentials.

2.1 Asymptotically corrected exchange-correlation potentials

It is known that the asymptotic behaviour of the exact elec-
tron density is

lim
r?=

o(r) D exp([2(2I)1@2r) (18)

and thus in DFT

lim
r?=

/HOMO(r) D exp([(2I)1@2r) (19)

where I is the ionisation energy. Substitution of this relation
into the KohnÈSham equation for the HOMO, evaluating in
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the limit r \ O, after dividing by yields/HOMO
[I] v

xc
(O)\ eHOMO (20)

or

lim
r?=

v
xc

\ [
1

r
] I] eHOMO (21)

The [1/r term follows from the one-electron nature of
exchange. The potentials of conventional continuum function-
als such as GGA give reasonably accurate HOMO eigen-
values, near for open-shell systems. This iseHOMOD [I/2
correctly shifted from [I, in accordance with an average over
the integer discontinuity.15,16 However, their potentials vanish
asymptotically, and so do not satisfy eqn. (21) and this leads
to very poor virtual eigenvalues and orbitals. We have there-
fore recently presented a method for correcting GGA
potentials14 in the following manner.

From the density, we determine atomic densities sur-QArounding each atom A. If where is the BraggrA \ aBA , BAradius of atom A, for any A, then the point is in the molecular
region, and we use the conventional functional derivative v

xc
;

if for all A, then the point is in the asymptoticrA [ bBA ,
region and we use the asymptotic form eqn. (21) for withv

xc
,

r~1\N~1 If the point is in between, we linearly;A QA rA~1.
interpolate. a, b are parameters ; we have found that a \ 3.0
and b \ 4.0 work well for all systems we have studied. Clearly
predictions are susceptible to having sensible values for these
two parameters. We have presented evidence that this scheme
obtains the orbitals of the H atom (through n \ 5). The imple-
mentation of this correction is straightforward because the
evaluation of exchange-correlation matrix elements uses
numerical quadrature. I is pre-determined from separate
KohnÈSham calculations on the ground state and its cation.
Note that this correction is only introduced into the KohnÈ
Sham equations to determine good orbitals. It plays no
explicit role in the subsequent construction of the hessians.

3 Calculations on beryllium and methylene
We demonstrate this discussion by determining excitation
energies for the simple systems Be and We use aCH2 .
TDDFT code which works in spin orbitals, which therefore
calculates excitations from any spin state, with con-M

Sserved.17 We also have a separate code for a closed shell
system.18,19 The codes are consistent.

In our studies we have used our GGA functional HCTH,20
more recently termed HCTH/93. We do not think that the
points we shall make are critically dependent on this choice of
GGA. We use extensive basis sets, augmented with di†use
functions to allow an accurate representation of the Rydberg
orbitals. We have used a large quadrature, with no radial
truncation in the solution of the KohnÈSham equations. The
methylene geometry was o CH o \ 1.078 and h \ 136¡.A�

3.1 Discussion of results for beryllium

The DFT energy of the ground state (1s22s2) 1S is [14.6683
and the energy of the Ðrst excited state (1s22s2p) 3P isEh ,

[14.5765 These calculations can be performed separatelyEh .
because the states have di†erent symmetry 1(M

S
\ 0,

respectively). By this delta SCF method the excitation energy
is 2.50 eV to be compared with an observed value of 2.73 eV.
(We have obtained all our observed values from “Atomic
Energy L evels Ï, published by the National Bureau of Stan-
dards for C. E. Moore in 1949). We would consider this pre-
diction error of 0.23 eV to be acceptable.

In Table 1 we report excitation energies from the ground
state to singlet excited states The identiÐcation of theM

S
\ 0.

excited state is made by examining the dominant eigenvector

Table 1 Excitations (in eV) from to singlet states1S(M
S
\ 0)(1s22s2)

of Be

State HCTH HCTH(AC) Expt HCTH(AC) error

1P (2s2p) 4.90 5.03 5.28 [0.25
1S (2s3s) 5.51 6.55 6.78 [0.23
1P (2s3p) 5.65 7.19 7.46 [0.27
1D (2p2) ? ? 7.00 ?
1D (2s3d) 5.68 7.30 7.99 [0.69
1S (2s4s) 5.63 7.86 8.09 [0.23
1P (2s4p) ? 8.11 8.34 [0.23
1D (2s4d) ? 8.20 8.53 [0.33
1S (2s5s) ? 8.35 8.60 [0.25
1P (2s5p) ? 8.51 ? ?
1D (2s5d) ? 8.55 8.80 [0.25

coefficients for the state. The table includes the excitation
energies determined using HCTH; those obtained when the
asymptotic correction is included (I was computed to be
0.3334 denoted HCTH(AC) ; the experimental values ; andEh),the error in the HCTH(AC) values.

It is immediately clear that the non-corrected HCTH values
are meaningless for Rydberg excitations ; it is not possible to
make the assignments. For HCTH(AC), we observe that the
prediction error for the s and p Rydberg states is an accept-
able 0.20È0.25 eV; these results are in line with many other
published calculations to Rydberg states using asymptotically
corrected potentials.14,18,19 The prediction for the valence
2s2p state is also good. It is this accuracy which has encour-
aged scientists to use TDDFT for excitation energy predic-
tions for excited states.

Table 1 also clearly demonstrates that this form of TDDFT
cannot describe pure double excitationsÈthe 1D (2p2) state is
absent. The 1D state that is predicted is identiÐed as the 2s3d
state, and is in error by [0.69 eV. This error may reÑect the
presence of two states ; the error from the observed average is
[0.2 eV. It is interesting to note however, that although pure
double excitations are absent in TDDFT, the method has pre-
viously been shown to provide an accurate representation of
excitations to states with signiÐcant double excitation charac-
ter. For example, in refs. 19 and 21, it is shown that excita-
tions to states containing up to 40% double excitation
character are predicted as accurately as those to singly excited
states.

Table 2 gives the corresponding results for excitations from
the ground state to the corresponding triplet states. Once
again the non-corrected HCTH values are meaningless for
Rydberg states ; in the remainder of this work we shall concen-
trate on the HCTH(AC) values. In general the errors are
larger for these triplet states (especially the lower ones) than
for the singlet states. They also show a wider variation. The
value of 2.19 eV for the lowest 3P (2s2p) excitation is in error

Table 2 Excitations (in eV) from to triplet states1S(M
S
\ 0)(1s22s2)

of Be

State HCTH HCTH(AC) Expt HCTH(AC) error

3P (2s2p) 2.19 2.19 2.73 [0.54
3S (2s3s) 5.21 6.11 6.46 [0.35
3P (2s3p) 5.59 6.84 7.29 [0.45
3P (2p2) ? ? 7.40 ?
3D (2s3d) 5.68 7.27 7.69 [0.42
3S (2s4s) 5.63 7.77 8.00 [0.23
3P (2s4p) 5.68 8.07 8.18 [0.11
3D (2s4d) ? 8.18 8.42 [0.24
3S (2s5s) ? 8.31 8.56 [0.25
3P (2s5p) ? 8.50 8.63 [0.13
3D (2s5d) ? 8.54 8.75 [0.21
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by [0.54 eV. This excitation energy is di†erent toÈand infe-
rior toÈthe value of 2.50 eV determined using the delta SCF
method, which just subtracted the energy of the two KohnÈ
Sham calculations. Again the 3D (2p2) state is absent,
although this time the error of the 2s3d state is not out of line,
although this may be explained because the two states are
close together by observation.

One way to calculate the energy of the 2p2 state is by con-
sidering it as a single excitation from the singly excited 2s2p
excited state. In Table 3 we consider HCTH(AC) excitations

from the 3P (2s2p) state.(Ia \ 0.2415, Ib \ 4.5136 Eh) (M
S
\ 1)

Only excitations to triplet states occur, and some of the
degeneracy is lost. For example, if we treat the base state as

then excitations to have a slightly di†erent2s2p
z
, 2s3p

x
, 2s3p

yenergy to that for in a similar vein there are predicted2s3p
z
;

excitations to the and states, even though these2s2p
x

2s2p
yshould be degenerate with the base state. The values in Table

3 are therefore average values. The predicted excitation ener-
gies have a high accuracy, with the exception once again of
the 2p2 state, which is in error by [0.60 eV. Because of the
degeneracy breaking, and the poor 2p2 prediction, we do not
favour using TDDFT for excitation predictions from such
states.

Another interesting feature of these results is the lack of
additivity in TDDFT excitation energies. The sum of the
HCTH(AC) excitations from the 1S ground state to the 3P
(2s2p) state (2.19 eV) ; and from this state to the 3S (2s3s) state
(3.61 eV) is 5.8 eV. This is signiÐcantly di†erent from the value
of 6.11 eV for the direct excitation from the 1S ground state to
the 3S state, in Table 2. Analogous results are obtained for
HCTH, and so this is not a consequence of the use of an
asymptotically corrected potential.

3.2 Discussion of results for methylene

We have performed calculations on the 3B1 (1a122a121b223a11b1)and states at the speciÐed geometry. This1A1 (1a122a121b223a12)geometry is appropriate for the ground triplet state. Previous
experimental and theoretical studies have taken account of the
signiÐcant structural di†erence between the singlet and triplet
states and so cannot be compared with this present study of
vertical excitations. The HCTH energies were [39.158 97 and
[39.113 93 respectively, giving *E\ 1.23 eV. Unlike inEhBe, this delta SCF value cannot be compared with the
TDDFT excitation from due to the conservation of3B1 M

S
.

For the triplet state and for theIa \ 0.3872, Ib \ 0.5714 Eh ,
singlet state Predictions for low-lyingIa \ Ib\ 0.3422 Eh .
excited states arising from these two states are given in Tables
4 and 5. Excitations to equivalent states are labelled (i)È(v).

In Table 4, it is noted that no low-lying quintet states are
predicted. The eigenvectors show that the two states were3B2heavily mixed. The (3s) Rydberg state is the lowest calcu-3A1lated excited state, due to preservation.M

S

Table 3 Excitations (in eV) from to triplet states3P(M
S
\ 1)(1s22s2p)

of Be

State HCTH(AC) Expt Error

3P (2s2p) 0.02 0.0 0.02
3S (2s3s) 3.61 3.73 [0.12
3P (2p2) 4.08 4.68 [0.60
3P (2s3p) 4.48 4.56 [0.08
3D (2s3d) 4.80 4.97 [0.17
3S (2s4s) 5.19 5.27 [0.08
3P (2s4p) 5.56 5.45 0.11
3D (2s4d) 5.66 5.70 [0.04
3S (2s5s) 5.78 5.83 [0.05
3P (2s5p) 6.00 5.91 0.09
3D (2s5d) 6.03 6.03 0.00

Table 4 Excitations (in eV) from the 3B1 (M
S
\ 1)(1a122a121b223a11b1)state of CH2

State Excitation HCTH(AC)

3A1 1b1] 3s 6.50 (i)
3A2 1b2] 3a1 6.99 (ii)
3B1 3a1] 3s 7.36
3B2 1b2] 1b1 7.58
3B2 1b1] 3p 7.80 (iii)
3A1 1b1] 3p 8.05 (iv)
3B1 1b1] 3p 8.18 (v)
3A2 3a1] 3p 8.60

In Table 5, the Ðrst observation is that the state is cor-3B1rectly predicted to exist. Although this state lies below the ref-
erence state, we would still expect a positive u2 and thus a
real excitation energy. Instead the excitation is predicted to be
imaginary. The corresponding state is correctly predicted1B1above the state, but only by 0.31 eV. The Ðve common1A1triplet states in Tables 4 and 5 di†er in energy by 1.31, 1.10,
1.41, 1.31 and 1.54 eV, reasonably close to the delta SCF value
of 1.23 eV. Note that the state is not pre-1A1 (1a122a121b221b12)dicted because it is again a double excitation. We have every
reason, based on previous experience, to believe that the verti-
cal excitation energies predicted in Tables 4 and 5 are correct
to 0.2È0.3 eV, with the important exceptions of the and3B1lowest states in Table 5.1B1

4 Conclusions
In this paper we have drawn attention to some important fea-
tures of TDDFT for the prediction of excitation energies,
using the simple systems Be and as examples. These areCH2as follows.

(i) TDDFT calculations using GGA functionals are essen-
tially worthless for Rydberg excitations unless the exchange-
correlation potential is adjusted to take the integer
discontinuity e†ect into account. This is consistent with pre-
vious studies.14,19

(ii) Pure doubly excited states are not predicted, the sim-
plest example being the 1D (2p2) state of Be, not being pre-
dicted as an excitation from 1S. Indirect methods (i.e.
excitations from other states) to obtain such states are also
associated with difficulties.

(iii) Calculating the excitation energy as the di†erence
between two separate KS calculations is not necessarily the
same as a TDDFT excitation. The former is more reliable for
Be, but such a delta SCF calculation is only possible for the
lowest excitation (closed-shell singlet to high-spin triplet).

(iv) Excitation energies determined using two di†erent refer-
ence states are not additive.

Table 5 Excitations (in eV) from the 1A1 (M
S
\ 0)(1a122a121b223a12)state of CH2

State Excitation HCTH(AC)

3B1 3a1] 1b1 0.47i
1B1 3a1] 1b1 0.31
3A1 3a1] 3s 5.19 (i)
1A1 3a1] 3s 5.42
3A2 1b2] 1b1 5.89 (ii)
3B2 3a1] 3p 6.39 (iii)
1B2 3a1] 3p 6.52
3B1 3a1] 3p 6.64 (v)
3A1 3a1] 3p 6.74 (iv)
1B1 3a1] 3p 6.83
1A2 1b2] 1b1 6.97
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(v) “Excitations Ï to states that are lower in energy do not
appear to be well predicted. This may be coupled to the fact
that such states are often close in energy, and our experience
is that TDDFT often gives poor predictions in such cases.

(vi) Excitations from the closed shell ground state to excited
triplet states may not be as reliable as those to excited singlet
states.

However we must conclude that our experience with
TDDFT is that it is a highly successful method for the deter-
mination of excitation energies, being inexpensive but accu-
rate. One must simply remember when it is not successful, as
highlighted here. There is one other case well-known to us,
namely charge transfer states, which we have not examined,
but which we view as a distinct problem.18
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