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1 Integration:

1.1 Integrals you should know:

1.1.1 Integrals involving xn

Z
axn dx =

a

n + 1
xn+1 (1)Z

a

x
dx = a lnx (2)Z

a

xn
dx = � a

(n� 1)xn�1
(3)

1.1.2 Integrals involving sin,cos and ex

Z
sin(ax) dx = �1

a
cos(ax) (4)Z

cos(ax) dx =
1

a
sin(ax) (5)Z

eax dx =
1

a
eax (6)
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1.2 Tricks for evaluating integrals:

When an integral is more complicated than the ones shown above, integral tables are often

helpful. However, often the integral you are trying to solve and the ones in the tables do

not look the same and you may need to apply some manipulations to get them into the

\standard" form. Tricks that you may �nd helpful are described below:

1.2.1 Break the integral into steps

Z
1

�1

F (x) dx =
Z 0

�1

F (x) dx+
Z
1

0
F (x) dx (7)

=
Z a

�1

F (x) dx+
Z b

a
F (x) dx +

Z
1

b
F (x) dx (8)

1.2.2 Change the dummy variable

Since the result of an integration is independent of the variable over which the integration

is carried out, it can be treated as a dummy variable, e.g. the result does not depend

on what label it is given. It can be called x, u or Harry and the result will not change.

Mathematically:

Z b

x=a
F (x) dx =

Z b

u=a
F (u) du (9)

1.2.3 Change of variables

If u = kx, then x = u=k,

dx =
dx

du
du =

1

k
du (10)Z b

x=a
F (x) dx =

1

k

Z kb

u=ka
F

�
u

k

�
du (11)

1.2.4 Switching the limits of integration

Switching the limits of integration changes the sign of the integral:

Z b

x=a
F (x) dx = �

Z a

x=b
F (x) dx (12)

1.2.5 Integration by partsZ b

x=a
u(x)

dv(x)

dx
dx = u(x)v(x)jbx=a �

Z b

x=a
v(x)

du(x)

dx
dx (13)
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1.2.6 Other tricks

If the integrand contains sin's or cos's, you may �nd it necessary to utilize one or more of

the trig identities reviewed below. If the integrand is even [F (x) = F (�x)] then
Z a

�a
F (x) dx = 2

Z a

0
F (x) dx (14)

If the integrand is odd [F (x) = �F (�x)]
Z a

�a
F (x) dx = 0 (15)

2 Derivatives

2.1 Ones you should know:

dun

dx
= nun�1du

dx
(16)

deu

dx
= eu

du

dx
(17)

d lnx

dx
=

1

x
(18)

d sinx

dx
= cos x (19)

d cos x

dx
= � sin x (20)

2.2 Special relationships:

Chain rule:
d[F (u(x))]

dx
=

dF

du

du

dx
(21)

Derivative of a product:
d(uv)

dx
=

du

dx
v + u

dv

dx
(22)

Derivative of a ratio:

d(u=v)

dx
=

v
�
du
dx

�
� u

�
dv
dx

�
v2

(23)

3 Series Expansions of Functions

The �rst derivative of a function provides its slope, the second its curvature. This means

that if we are interested in the behavior of a function near a speci�c point then a good

approximation is obtained by using a second order polynomial:

F (x) � A(x� a)2 +B(x� a) + C (24)
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Where A = F 00(a)=2, B = F 0(a) and C = F (a). At x = a the relationship is exact, while at

points near a the relationship provides a reasonable approximation to F (x), the size of the

error will depend on the size of the deviation of the function from being strictly quadratic

[the importance of higher order terms in the expansion]. This idea becomes important in

physical chemistry when one wants to study deviations from ideal behavior, for example,

the behavior of gases near zero pressure (the ideal gas limit).

In general, the series expansion of a function can be written as:

F (x) =
X
j

F (j)(a)

j!
(x� a)

j
(25)

where F (j)(a) represents the jth derivative of F (x) evaluated at x = a. Some particularly

useful expansions (all about x = 0) and the values of x for which they converge are given

below:

ex = 1 + x +
x2

2!
+ : : :+

xn

n!
+ : : : ; [all x] (26)

ln(1 + x) = x� x2

2
+
x3

3
� : : :� (�1)nx

n

n
� : : : ; [x2 < 1] (27)

1

1 + x
= 1� x+ x2 + : : :+ (�1)nxn + : : : ; [x2 < 1] (28)

1

1� x
= 1 + x + x2 + : : :+ xn + : : : ; [x2 < 1] (29)

1

(1� x)2
= 1 + 2x + 3x3 + : : :+ (n+ 1)xn + : : : ; [x2 < 1] (30)

p
1 + x = 1 +

x

2
� x2

8
+

x3

16
+ : : : ; [x2 < 1] (31)

sinx = x� x3

6
+

x5

120
� : : : ; [all x] (32)

cos x = 1� x2

2
+

x4

24
� : : : ; [all x] (33)

4 Partial Derivatives

4.1 De�nitions:

If a function depends on two or more variables, f(x; y), then the partial derivative expresses

the dependence of f on one of the variables when all other variables are held constant.

Mathematically the partial derivative of f with respect to x at constant y is represented

by:

 
@f

@x

!
y

(34)

By analogy to the one-dimensional de�nition of the di�erential of z(x):
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dz =
dz

dx
dx (35)

The di�erential of z(x; y) is given by:

dz(x; y) =

 
@z

@x

!
y

dx +

 
@z

@y

!
x

dy (36)

or more generally,

dz(x1; x2; : : : ; xn) =

 
@z

@x1

!
x2;:::;xn

dx1 + : : :+

 
@z

@xn

!
x1;x2;:::;xn�1

dxn (37)

Physically, the relationship of Eq. (36) says that if x is changed by a in�nitesimal amount

dx, the corresponding value of dz is
�
@z
@x

�
y
dx and if y is changed by an in�nitesimal amount

dy, the corresponding change in z is given by
�
@z
@y

�
x
dy. If both x and y are changed by

di�erential amounts then the change in z will be given by the sum of the individual changes,

assuming dz is an exact di�erential (see the following section). For an exact di�erential,

the order of di�erentiation does not matter:

"
@

@x

 
@z

@y

!
x

#
y

=

2
4 @

@y

 
@z

@x

!
y

3
5
x

(38)

which means the second derivative of z(x; y) can be expressed unambiguously by

@2z

@x@y
� @2z

@y@x
(39)

4.2 An Example:

z(x; y) = x3 + 4x2y + 12xy2 + 7y3 
@z

@x

!
y

= 3x2 + 8xy + 12y2

 
@z

@y

!
x

= 4x2 + 24xy + 21y2

2
4 @

@y

 
@z

@x

!
y

3
5
x

= 8x + 24y

"
@

@x

 
@z

@y

!
x

#
y

= 8x + 24y
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4.3 Important relationships

If f can be written as a function of either fx; yg where these variables are functions of

fu; vg so that:

x = x(u; v)

y = y(u; v)

by the chain rule [Eq. (21)],

 
@f

@u

!
v

=

 
@f

@x

!
y

 
@x

@u

!
v

+

 
@f

@y

!
x

 
@y

@u

!
v

(40)

NOTE the variables appear in speci�c pairs - for example, derivatives with respect to x are

taken at constant y and derivatives with respect to u are taken at constant v. This general

relationship simpli�es to some important relationships

4.3.1 u = x and v = z

 
@f

@x

!
z

=

 
@f

@x

!
y

 
@x

@x

!
z

+

 
@f

@y

!
x

 
@y

@x

!
z

=

 
@f

@x

!
y

+

 
@f

@y

!
x

 
@y

@x

!
z

(41)

since
�
@x
@x

�
z
= 1

4.3.2 u = x, v = z and f = z

 
@z

@x

!
z

=

 
@z

@x

!
y

+

 
@z

@y

!
x

 
@y

@x

!
z 

@z

@x

!
y

= �
 
@z

@y

!
x

 
@y

@x

!
z

(42)

since
�
@z
@x

�
z
= 0. Using the relationship:

 
@z

@x

!
y

1�
@x
@z

�
y

(43)

Eq. (42) can be rewritten as:

�1 =
 
@x

@z

!
y

 
@z

@y

!
x

 
@y

@x

!
z

(44)
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5 Exact and Inexact Di�erentials

Functions, like U or H, have the property that their value depends only on the state of the

system and not how it arrived at that state. These functions are called state functions and

change in their values resulting from a change in the state of the system depends only on

the starting and ending points, but not how they arrived there. The di�erentials of these

functions are called exact di�erentials. Mathematically this means that the di�erential of

a state function f(x; y) is given by:

df =

 
@f

@x

!
y

dx+

 
@f

@y

!
x

dy (45)

= M(x; y)dx+N(x; y)dy (46)

Eq. (38) says that:

 
@M

@y

!
x

=

 
@N

@x

!
y

(47)

which is often taken as the de�nition of exactness. Di�erentials for which this relationship

does not hold, or where the changes depend on the path are called inexact di�erentials and

are represented by df . Examples of inexact di�erentials in thermodynamics are dq and dw

since the work done on a system or the heat absorbed by the system depend on the path

the system takes to get from its initial to �nal state.

6 Properties of Logs:

log(a) + log(b) = log(ab) (48)

log(a)� log(b) = log(a=b) (49)

log(a)n = n log(a) (50)

ln(a) = ln(10) log10(a) = 2:303 log10(a) (51)
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7 Review of Trigonometry

sin(a+ b) = sin(a) cos(b) + sin(b) cos(a) (52)

sin(a� b) = sin(a) cos(b)� sin(b) cos(a) (53)

cos(a+ b) = cos(a) cos(b)� sin(a) sin(b) (54)

cos(a� b) = cos(a) cos(b) + sin(a) sin(b) (55)

cos(2a) = cos2(a)� sin2(a) = 2 cos2(a)� 1 = 1� 2 sin2(a) (56)

sin(2a) = 2 sin(a) cos(a) (57)

cos2(a) =
1

2
(cos(2a) + 1) (58)

sin2(a) =
1

2
(1� cos(2a)) (59)

8




