THE POSTULATES OF QUANTUM MECHANICS

Postulate I (The system is described by a wavefunction)

Any dynamical system of *n* particles is described as completely as possible by the wavefunction $\Psi(q_1, q_2, ..., q_{3n}; \omega_1, \omega_2, ..., \omega_n; t)$, where the *q*'s are spatial coordinates (3 per particle), ω 's are spin coordinates (1 per particle), and *t* is the time coordinate. $\Psi^* \Psi d\tau$ is the probability that the space-spin coordinates lie in the volume element $d\tau$ ($\equiv d\tau_1 d\tau_2 \cdots d\tau_n$) at time *t*, if Ψ is normalized.

Postulate II (Physical observables are associated with hermitian operators)

To every observable dynamical variable M (a classical physical observable), we associate a hermitian operator \hat{M} by :

- write the classical expression as fully as possible in terms of <u>cartesian</u> momenta (*p*) and positions (*q*)
- (2) if *M* is *q* or *t*, \hat{M} is *q* or *t*
- (3) if *M* is a momentum, p_q , the operator is $-i\hbar \frac{\partial}{\partial q}$, where *q* is conjugate to *p* (e.g., *x* is

conjugate to p_x).

(4) If *M* is expressible in terms of *q*'s, *p*'s, and *t*, \hat{M} is found by substituting the above operators in the expression for *M*. Nearly always this will provide a hermitian operator.

Postulate III (Wavefunctions are solutions of the TDSE)

The wavefunctions (or state functions) satisfy the time dependent Schrödinger equation

$$\hat{H}\Psi(q,t) = i\hbar\frac{\partial}{\partial t}\Psi(q,t)$$

where \hat{H} is the hamiltonian operator for the system.

Postulate IV (Precise measurements: eigenvalues/eigenfunctions)

If Ψ_b is an eigenfunction of the operator \hat{B} with eigenvalue *b*, then if we make a measurement of the physical observable represented by \hat{B} for a system whose wavefunction is Ψ_b , we <u>always</u> obtain *b* as the result.

Postulate V (Imprecise measurements: average or expectation values)

When a large number of identical systems have the same wavefunction Ψ , the expected average ("expectation value") of measurements on the observable *M* (one measurement per system) is given by

$$\left\langle M\right\rangle = \frac{\int \Psi^* \ \hat{M} \Psi \, d\tau}{\int \Psi^* \ \Psi \, d\tau}$$

(The denominator equals one if Ψ is normalized.)

Note that if Ψ is an eigenfunction of the operator \hat{M} , this postulate reverts to Postulate IV.