From Atkins: $\quad 10.1,10.3,10.4,10.6,10.7,10.11,10.15,10.19,10.20,10.23$
10.1) The rate of formation of C in the reaction $2 A+B \rightarrow 3 C+2 D$ is $2.2 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$. State the rates of formation and consumption of A, B, and D. rate of consumption of $\mathrm{A}=2 / 3$ (rate of formation of C$)=1.5 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ rate of consumption of $\mathrm{B}=1 / 3$ (rate of formation of C) $=0.73 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ rate of formation of $D=2 / 3$ (rate of formation of C) $=1.5 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
10.3) If the rate laws are expressed with (a) concentrations in molecules m^{-3}, (b) pressures in kPa , what are the units of the $2^{\text {nd }}$ order and $3^{\text {rd }}$ order rate constants? In both cases, the units of the rate itself must be in concentration or pressure per second:
a) For $2^{\text {nd }}$ order: $\quad r=k[\mathrm{~A}]^{2}, \quad k$ has units m^{3} molecules $^{-1} \mathrm{~s}^{-1}$ For $3^{\text {rd }}$ order: $\quad r=k[\mathrm{~A}]^{3}, \quad k$ has units m^{6} molecules $\mathrm{s}^{-2} \mathrm{~s}^{-1}$
b) For $2^{\text {nd }}$ order: $\quad r=k\left(\mathrm{P}_{\mathrm{A}}\right)^{2}, k$ has units $\mathrm{kPa}^{-1} \mathrm{~s}^{-1}$ For $3^{\text {rd }}$ order: $\quad \mathrm{r}=k\left(\mathrm{P}_{\mathrm{A}}\right)^{3}, \mathrm{k}$ has units $\mathrm{kPa}^{-2} \mathrm{~s}^{-1}$
10.4) The following initial rate data were obtained on the rate of binding of glucose with the enzyme hexokinase present at a concentration of $1.34 \mathrm{mmol} \mathrm{L}^{-1}$. What is (a) the order of reaction with respect to glucose, (b) the rate constant?

$\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right]\left(\mathrm{mmol} \mathrm{L}^{-1}\right)$	1.00	1.54	3.12	4.02
Initial rate $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$	5.0	7.6	15.5	20.0

The reaction of interest is: $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{HK} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}-\mathrm{HK}$
The rate law is assumed to have the form: $\quad r=k\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right]^{\mathrm{x}}[\mathrm{HK}]^{\mathrm{y}}$
In the method of initial rates, this rate law becomes: $\mathrm{r}_{0}=\mathrm{k}\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right]_{0}{ }^{\mathrm{x}}[\mathrm{HK}]_{0}^{\mathrm{y}}$
There are two ways to go about this problem, taking simple ratios and graphically.

1) For each possible combination of experiments, construct the ratio of the intial rates:

$$
\begin{aligned}
& \text { e.g., } \frac{r_{01}}{r_{02}}=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right]_{01}^{\mathrm{X}}}{\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right]_{02}^{\mathrm{X}}} \quad \text { (the } k \text { 's and the HK concentrations cancel out) } \\
& \frac{r_{01}}{r_{02}}=\frac{5.0}{7.6}=\left(\frac{1.00 \times 10^{-3}}{1.54 \times 10^{-3}}\right)^{x} \\
& \ln \left(\frac{5.0}{7.6}\right)=x \ln \left(\frac{1.00 \times 10^{-3}}{1.54 \times 10^{-3}}\right) \\
& x=0.97
\end{aligned}
$$

For the other combinations:
r01/r03, x=0.99
r01/r04, $x=1.00$
r02/r03 , $x=1.01$
r02/r04, $x=1.01$
r03/r04, $x=1.01$

AVG order with respect to glucose $=0.998=1$ (1st order in glucose) The effective 1sts order rate constant is obtained by substitution for each combination, AVG $k=4920 \mathrm{~mol}^{-1} \mathrm{~L} \mathrm{~s}^{-1}$ (assumes the enzyme is in excess)
2) For a graphical (better) solution, plot $\ln r_{0}$ vs. $\ln \left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right]$. After fitting to a straight line, the slope will be x and the y-intercept will correspond to $\ln k$.

Therefore:

$$
x=0.9986=1 \text { and } k=\exp (8.50215)=4925 \mathrm{~mol}^{-1} \mathrm{~L} \mathrm{~s}^{-1}
$$

(Note that these agree with the values obtained with the ratio method)
10.6) The rate constant for the $1^{\text {st }}$ order decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in the reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5}$ $(\mathrm{g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ is $k=3.38 \times 10^{-5} \mathrm{~s}^{-1}$ at $25^{\circ} \mathrm{C}$.
a) What is the half-life of $\mathrm{N}_{2} \mathrm{O}_{5}$? What will be the total pressure, initially 500

Torr for the pure $\mathrm{N}_{2} \mathrm{O}_{5}$ vapor, a) 10 s, b) 10 min after initiation of the reaction?
a) For a $1^{\text {st }}$ order reaction, $t_{1 / 2}=\frac{\ln 2}{k}$

So, $t_{1 / 2}=\frac{\ln 2}{3.38 \times 10^{-5}}=2.05 \times 10^{4} \mathrm{~s}$
b \& c) For a $1^{\text {st }}$ order reaction, $[\mathrm{A}]=[\mathrm{A}]_{0} e^{-k t}$, or in the present case if we assume the volume and temperature are held constant: $\mathrm{P}_{\mathrm{N}_{2} \mathrm{O}_{5}}=\mathrm{P}_{\mathrm{N}_{2} \mathrm{O}_{5}}^{t=o} e^{-k t}$ since then pressure is directly proportional to the number of moles of $\mathrm{N}_{2} \mathrm{O}_{5}$ (perfect gas).

After 10 s , the pressure due to $\mathrm{N}_{2} \mathrm{O}_{5}$ will be reduced to:
$\mathrm{P}_{\mathrm{N}_{2} \mathrm{O}_{5}}=\left(500\right.$ Torr) $e^{-k t}=(500) \exp \left[-\left(3.38 \times 10^{-5}\right)(10)\right]=499.8$ Torr
From the stoichiometry of the reaction, a loss of 0.2 Torr of $\mathrm{N}_{2} \mathrm{O}_{5}$ will be accompanied by an increase of $5 / 2 \times 0.2$ Torr $=0.5$ Torr for the products $\mathrm{P}($ total $)=499.8+0.5=500.3$ Torr (essentially unchanged)

After $10 \mathrm{~min}=600 \mathrm{~s}$,

$$
\mathrm{P}_{\mathrm{N}_{2} \mathrm{O}_{5}}=(500) \exp \left[-\left(3.38 \times 10^{-5}\right)(600)\right]=490 \text { Torr }
$$

The loss of 10 Torr of $\mathrm{N}_{2} \mathrm{O}_{5}$ is matched by an increase of $5 / 2(10)=25$ Torr in the products.
$\mathrm{P}($ total $)=490+25=515$ Torr
Note that you could also work this problem in terms of the fraction of $\mathrm{N}_{2} \mathrm{O}_{5}$ dissociated.
10.7) In the oxidation of ethanol, the molar concentration of ethanol decreased in a first-order reaction from $220 \mathrm{mmol} \mathrm{L}^{-1}$ to $56.0 \mathrm{mmol} \mathrm{L}^{-1}$ in $1.22 \times 10^{4} \mathrm{~s}$. What is the rate constant of the reaction?

For a $1^{\text {st }}$ order reaction, $[\mathrm{A}]=[\mathrm{A}]_{\mathrm{O}} e^{-k t}$ or $\ln [\mathrm{A}]=\ln [\mathrm{A}]_{\mathrm{O}}-k t$ Hence,

$$
\begin{aligned}
k & =\frac{1}{t}\left(\ln [\mathrm{~A}]_{\mathrm{O}}-\ln [\mathrm{A}]\right) \\
& =\frac{1}{1.22 \times 10^{4}}[\ln (220)-\ln (56)]=1.12 \times 10^{-4} \mathrm{~s}^{-1}
\end{aligned}
$$

10.11) The formation of NOCl from NO in the presence of a large excess of chlorine is pseudosecond-order in NO. In an experiment to study the reaction, the partial pressure of NOCl increased from zero to 100 Pa in 522 s . What is the rate cosntant of the reaction given that the initial partial pressure of NO is 300 Pa ?
The balanced reaction is: $\mathrm{NO}+\frac{1}{2} \mathrm{Cl}_{2} \rightarrow \mathrm{NOCl}$ The rate for the production of NOCl is: $\frac{d[\mathrm{NOCl}]}{d t}=k[\mathrm{NO}]^{2}$, where k is the pseudo 2nd-order rate constant and Cl_{2} is in large excess.

Using the integrated rate law for a 2nd-order reaction: $[\mathrm{NOCl}]=\frac{k t[\mathrm{NO}]_{0}^{2}}{1+k t[\mathrm{NO}]_{0}}$
But for constant volume, the partial pressures are directly proportional to the molar concentrations, so we can use these directly in this expression:

$$
P_{\mathrm{NOCl}}=\frac{k t P_{\mathrm{NO}, 0}^{2}}{1+k t P_{\mathrm{NO}, 0}}
$$

Solving for the rate constant k,

$$
\begin{aligned}
k & =\frac{P_{\mathrm{NOCl}}}{t\left(P_{\mathrm{NO}, 0}^{2}-P_{\mathrm{NOCl}} P_{\mathrm{NO}, 0}\right)}=\frac{100 \mathrm{~Pa}}{522\left(300^{2}-(100)(300)\right)} \\
& =3.19 \times 10^{-6} \frac{\mathrm{~Pa}}{\mathrm{~s} \mathrm{~Pa}^{2}}=3.19 \times 10^{-6} \mathrm{~Pa}^{-1} \mathrm{~s}^{-1}
\end{aligned}
$$

10.15) The half-life for ${ }^{90} \mathrm{Sr}=28.1 \mathrm{yr}$. How much of $1.00 \mu \mathrm{~g}$ will remain after (a) 19 yr. and (b) 75 yr .
Each half-life decreases the concentration by $1 / 2$:
$[\mathrm{A}]_{t}=\left(\frac{1}{2}\right)^{n}[\mathrm{~A}]_{\mathrm{o}}$, where n is the number of half-lives
Taking the natural \log of both sides: $\quad \ln [\mathrm{A}]=n \ln \frac{1}{2}+\ln [\mathrm{A}]_{\mathrm{o}}$
a) $19 \mathrm{yr}=0.6762$ half-lives
$\ln x=(0.6762) \ln \frac{1}{2}+\ln (1.00)=-0.4687$
$x=0.63 \mu \mathrm{~g}$
b) 75 yr . $=2.669$ half-lives
$\ln x=(2.669) \ln \frac{1}{2}+\ln (1.00)=-1.832$
$x=0.16 \mu \mathrm{~g}$
10.19) A rate constant is $1.78 \times 10^{-4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ at $19^{\circ} \mathrm{C}$ and $1.38 \times 10^{-3} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ at $37^{\circ} \mathrm{C}$. Evaluate the Arrhenius parameters of the reaction.
Starting from the relation derived from the Arrhenius equation (note: you should be able to easily derive this yourself!)

$$
\begin{aligned}
& \ln \frac{k_{1}}{k_{2}}=\frac{E_{a}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \\
E_{a}= & \frac{R \ln \frac{k_{1}}{k_{2}}}{\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)}=\frac{(8.3145) \ln \frac{1.78 \times 10^{-4}}{1.38 \times 10^{-3}}}{\left(\frac{1}{310}-\frac{1}{292}\right)} \\
= & 85.63 \times 10^{3} \mathrm{~J} / \mathrm{mol}=85.6 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

using the $19^{\circ} \mathrm{C}$ data:

$$
A=\frac{k}{e^{-\frac{E_{a}}{R T}}}=\frac{1.78 \times 10^{-4}}{e^{-\frac{85.63 \times 10^{3}}{(8.3145)(292)}}}=3.70 \times 10^{11} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}
$$

10.20) The activation energy for the decomposition of benzene diazonium chloride is $99.1 \mathrm{~kJ} / \mathrm{mol}$. At what temperature will the rate be 10% greater than its rate at $25^{\circ} \mathrm{C}$?
Starting with the relation: $\ln \frac{k_{2}}{k_{1}}=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)$
if $k_{2}=1.10\left(k_{1}\right): \quad \ln \frac{1.10 k_{1}}{k_{1}}=\ln (1.10)=\frac{E_{a}}{R}\left(\frac{1}{298}-\frac{1}{T_{2}}\right)$
Rearranging to solve for T_{2} :

$$
\begin{aligned}
T_{2} & =\frac{E_{a}}{\frac{E_{a}}{298}-R \ln 1.10} \\
& =\frac{99.1 \times 10^{3}}{\frac{99.1 \times 10^{3}}{298}-(8.3145) \ln 1.10}=299 \mathrm{~K}
\end{aligned}
$$

10.23) Food rots about 40 times more rapidly at $25^{\circ} \mathrm{C}$ than when it is stored at $4^{\circ} \mathrm{C}$.

Estimate the overall activation energy for the processes responsible for its decomposition.
rate @ $25^{\circ} \mathrm{C}=40 \mathrm{x}$ rate @ $4^{\circ} \mathrm{C}$:

$$
\begin{aligned}
& \ln \frac{40 k_{4}}{k_{4}}=\frac{E_{a}}{R}\left(\frac{1}{277}-\frac{1}{298}\right) \\
& E_{a}=\frac{R \ln 40}{\left(\frac{1}{277}-\frac{1}{298}\right)}=1.21 \times 10^{5} \mathrm{~J} / \mathrm{mol}=121 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

