Chem 338

Homework Set \#8 solutions
October 30, 2001
From Atkins: $\quad 8.1,8.4,8.8,8.12,8.17,8.21,8.24,8.28,8.29,8.31+8.30$
8.1) Write the proton transfer equlibria for the following acids in aqueous solution and identify the conjugate acid-base pairs in each one:
a) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HSO}_{4}{ }^{-}(\mathrm{aq})$ Acid Base c.a. c.b
b) $\mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})$

> Acid Base c.a. c.b
c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}(\mathrm{aq})$

Acid Base c.a. c.b
d) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq})$
Acid Bas
c.a.
c.b
e) $\mathrm{HCOOH}(\mathrm{aq})+\underset{2}{ } \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HCOO}^{-}(\mathrm{aq})$ Acid Base c.a. c.b
f) $\underset{\text { Acid }}{\mathrm{NH}_{2} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})}+\underset{\text { Base }}{\mathrm{H}_{2} \mathrm{O}(\mathrm{l})} \underset{\text { c.a. }}{\leftrightarrows} \underset{\mathrm{H}_{3} \mathrm{O}^{+}}{\text {caq })}+\underset{\text { c.b }}{\mathrm{NH}_{2} \mathrm{NH}_{2}(\mathrm{aq})}$
8.4) Suppose that something had gone wrong in the Big Bang, and instead of ordinary hydrogen there was an abundance of deuterium in the universe. There would be many subtle changes in equilibria, particularly the deuteron transfer equilbria of heavy atoms and bases. The K_{w} for heavy water at $25^{\circ} \mathrm{C}$ is 1.35×10^{-15}. (a) Write the chemical equation for the autoprotolysis of $\mathrm{D}_{2} \mathrm{O}$. (b) Evaluate $p K_{w}$ for $\mathrm{D}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$. (c) Calculate the molar concentrations of $\mathrm{D}_{3} \mathrm{O}^{+}$and OD^{-}in neutral heavy water at $25^{\circ} \mathrm{C}$. (d) Evalulate the pD and pOD of neutral heavy water at $25^{\circ} \mathrm{C}$. (e) Find the relation between pD , pOD , and $p K_{w}\left(\mathrm{D}_{2} \mathrm{O}\right)$.
a) $\mathrm{D}_{2} \mathrm{O}(\mathrm{l})+\mathrm{D}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{D}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OD}^{-}(\mathrm{aq})$
b) given that $K_{w}=1.35 \times 10^{-15}, p K_{w}=-\log \left(1.35 \times 10^{-15}\right)=14.87$
c) $K_{w}=\left[\mathrm{D}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OD}^{-}\right]$

$$
\left[\mathrm{D}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OD}^{-}\right]=\sqrt{1.35 \times 10^{-15}}=3.67 \times 10^{-8} \mathrm{M}
$$

d) $\mathrm{pD}=-\log \left[\mathrm{D}_{3} \mathrm{O}^{+}\right]=-\log \left(3.67 \times 10^{-8}\right)=7.44($ which $=\mathrm{pOD})$
e) $K_{w}=\left[\mathrm{D}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OD}^{-}\right]$and taking the $-\log$ of both sides:

$$
\begin{aligned}
& -\log K_{w}=-\log \left[\mathrm{D}_{3} \mathrm{O}^{+}\right]-\log \left[\mathrm{OD}^{-}\right] \\
& p K_{w}=\mathrm{pD}+\mathrm{pOD}=14.87
\end{aligned}
$$

8.8) (a) A sample of potassium acetate, $\mathrm{KCH}_{3} \mathrm{CO}_{2}$, of mass 8.4 g is used to prepare 250 mL of solution. What is the pH of the solution? (b) What is the pH of a solution when 3.75 g of ammonium bromide, $\mathrm{NH}_{4} \mathrm{Br}$, is used to make 100 mL of solution? (c) An aqueous solution of volume 1.0 L contains 10.0 g of potassium bromide. What is the percentage of Br^{-}ions that are protonated?
a) 8.4 g of $\mathrm{KCH}_{3} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mole}}{59.05+39.10}=0.08558 \mathrm{moles}$
$\left[\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}\right]=0.08558 \mathrm{~mol} / 0.25 \mathrm{~L}=0.3423 \mathrm{M}$
Acetate ion is the conjugate base of a weak acid (acetic) and K^{+}is essentially neutral (conjugate acid of KOH), so the acetate ion will govern the pH of the solution through:
$\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}(\mathrm{aq})$
K_{b} for this equilibrium is found from Table 8.1 under acetic acid to be 5.6×10^{-10} (or we could get K_{b} from K_{a} using the fact that $K_{a} K_{b}=K_{w}$)

$$
\begin{aligned}
& K_{b}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]}=\frac{x^{2}}{0.3423-x} \\
& \quad \text { if } x \ll 0.34 \text {, then } K_{b}=\frac{x^{2}}{0.3423} \text { and } x=1.38 \times 10^{-5} \mathrm{M}=\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

NOTE: 1.38×10^{-5} really is much less than 0.34 - approximation was valid So, $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=4.86$
$\mathrm{pH}=14.00-\mathrm{pOH}=9.14$
b) 3.75 g of $\mathrm{NH}_{4} \mathrm{Br} \times \frac{1 \mathrm{~mole}}{18.04+79.91}=0.03828$ moles

$$
\left[\mathrm{NH}_{4}{ }^{+}\right]=0.03828 \mathrm{~mol} / 0.10 \mathrm{~L}=0.3828 \mathrm{M}
$$

Since $\mathrm{NH}_{4}{ }^{+}$is the conjugate acid of a weak base $\left(\mathrm{NH}_{3}\right)$ and Br^{-}is the conjugate base of a strong acid (HBr), the $\mathrm{NH}_{4}{ }^{+}$ion will govern the pH of the solution through:
$\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq})$
The K_{a} for this acid equilibrium can be found from Table 8.1 under NH_{3} (or obtained from K_{b} as indicated in part a)
$K_{a}=5.6 \times 10^{-10}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}{ }^{+}\right]}=\frac{x^{2}}{0.3828-x}$
if $x \ll 0.3828$, then $K_{a}=\frac{x^{2}}{0.3828}$ and $x=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.46 \times 10^{-5} \mathrm{M}$
NOTE: 1.46×10^{-5} really is much less than 0.38
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.83$
c) 10.0 g of KBr
Br^{-}is the conjugate base of a strong acid (HBr) and hence $K_{b} \sim 0$ and the fraction that is protonated $=0$
8.12) Calculate the $\mathrm{pH}, \mathrm{pOH}$, and fraction of solute protonated or deprotonated in the following aqueous solutions: (a) $0.120 \mathrm{M} \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}(\mathrm{aq})$ (lactic acid), (b) $1.4 \times 10^{-4} \mathrm{M} \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}(\mathrm{aq})$, (c) $0.10 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{3} \mathrm{H}(\mathrm{aq})$ (benzenesulfonic acid).
a) $0 . .120 \mathrm{M}$ HLac (Lactic acid)

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{Lac}^{-}\right]}{[\mathrm{HLac}]}=\frac{x^{2}}{0.120-x} \quad \text { where } K_{a}=8.4 \times 10^{-4}
$$

If $x \ll 0.12,\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{0.120 K_{a}}=0.010 \mathrm{M}$
NOTE: this is only about 8% smaller than 0.12 , hence the approximation is borderline (5% is the accepted cutoff point). But we'll go with it $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.00$ (solving the quadratic yields a pH of 2.02)
$\mathrm{pOH}=14.0-\mathrm{pH}=12.0$
fraction ionized $=\frac{0.010}{0.120}=0.083$
b) $1.4 \times 10^{-4} \mathrm{M}$ HLac
as in part (a), if $x \ll 1.4 \times 10^{-4}$ then $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{1.4 \times 10^{-4} K_{a}}=3.4 \times 10^{-4} \mathrm{M}$ NOTE: the approximation is definitely not valid in this case. We have to solve the quadratic equation.

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{-K_{a} \pm \sqrt{K_{a}^{2}-4\left(-1.4 \times 10^{-4}\right)\left(K_{a}\right)}}{2}=1.22 \times 10^{-4} \mathrm{M}} \\
& \mathrm{pH}=3.91 \\
& \mathrm{pOH}=10.09
\end{aligned}
$$

$$
\text { fraction ionized }=\frac{1.22 \times 10^{-4}}{1.4 \times 10^{-4}}=0.87
$$

$$
\text { c) } 0.10 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{3} \mathrm{H}
$$

$$
K_{a}=0.20
$$

Can we use our approximation? $\sqrt{K_{a} /[H A]_{\text {initial }}}=1.4$, which is \gg than 0.05
So back to the quadratic eqn.:

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{-K_{a} \pm \sqrt{K_{a}^{2}-4(-0.10)\left(K_{a}\right)}}{2}=0.073 \mathrm{M}} \\
& \mathrm{pH}=1.14 \\
& \mathrm{pOH}=12.86
\end{aligned}
$$

fraction ionized $=\frac{0.073}{0.10}=0.73$
8.17) The weak base colloquially known as Tris, and more precisely as tris(hydroxymethyl)aminomethane, has $\mathrm{pK}_{\mathrm{a}}=8.3$ at $20^{\circ} \mathrm{C}$ and is commonly used to produce a buffer for biochemical applications. At what pH would you expect Tris to act as a buffer in a solution that has equal molar concentrations of Tris and its conjugate acid?
The equilibrium is: \quad Tris $+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{TrisH}^{+}+\mathrm{OH}^{-}$
and $\quad K_{b}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{TrisH}^{+}\right]}{[\text {Tris }]}$
or taking $-\log$ of both sides and rearranging:

$$
p O H=p K_{b}+\log \frac{\left[\mathrm{TrisH}^{+}\right]}{[\text {Tris }]}
$$

$\mathrm{pK}_{\mathrm{b}}=\mathrm{pK}_{\mathrm{w}}-\mathrm{pK}_{\mathrm{a}}=14.00-8.3=5.7$
For the case when $[$ Tris $]=\left[\right.$ TrisH $\left.{ }^{+}\right], \mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}=5.7$
Thus, $\mathrm{pH}=14-\mathrm{pOH}=8.3$
8.21) A buffer solution of volume 100 mL consists of $0.10 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ and 0.10 M NaCH ${ }_{3} \mathrm{CO}_{2}$ (aq). (a) What is its pH ? (b) What is the pH after the addition of 3.3 mmol NaOH to the buffer solution? (c) What is the pH after the addition of $6.0 \mathrm{mmol}_{\mathrm{HNO}_{3}}$ to the initial buffer solution?

For a 100 mL buffer solution that has $[\mathrm{HAc}]=0.10 \mathrm{M}$ and $[\mathrm{NaAc}]=0.10 \mathrm{M}$,
a) $K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{Ac}^{-}\right]}{[\mathrm{HAc}]} \quad$ for $\mathrm{HAc}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Ac}^{-}$
or likewise, $p H=p K_{a}-\log \frac{[\mathrm{HAc}]}{\left[\mathrm{Ac}^{-}\right]} \quad$ where the $\mathrm{p} K_{a}$ of acetic acid $=4.75$

$$
p H=4.75-\log \frac{0.10}{0.10}=4.75
$$

b) add 0.033 moles of NaOH
initial moles of HAc: $0.10 \mathrm{M} \times 0.100 \mathrm{~L}=0.01$ moles HAc
initial moles of $\mathrm{Ac}^{-}: 0.10 \mathrm{M} \times 0.100 \mathrm{~L}=0.01 \mathrm{moles}$ of Ac^{-}
Addition of strong base will shift the equilibrium to the right:

$$
p H=4.75-\log \frac{0.01-0.0033}{0.01+0.0033}=5.05
$$

(note that in the log term the volumes cancel out in the molar concentrations so that we can just use moles)
c) add 0.0060 moles of HNO_{3}
addition of strong acid will shift the equilibrium to the left:

$$
p H=4.75-\log \frac{0.01+0.0060}{0.01-0.0060}=4.15
$$

8.24) Calculate the pH of (a) $0.15 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$, (b) $0.15 \mathrm{M} \mathrm{NaCH}_{3} \mathrm{CO}_{2}(\mathrm{aq})$, and (c) $0.150 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$
a) for a solution of $0.15 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}: \quad \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NH}_{3}$

$$
K_{a}=5.6 \times 10^{-10}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=\frac{x^{2}}{0.15-x}
$$

$$
\text { if } x \ll 0.15, \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{0.15 K_{a}}=\sqrt{(0.15)\left(5.6 \times 10^{-10}\right)}=9.17 \times 10^{-6} \mathrm{M}
$$

(note approximation was valid)
$\mathrm{pH}=5.04$
b) for a solution of $0.15 \mathrm{M} \mathrm{NaCH}_{3} \mathrm{CO}_{2}$:

$$
K_{b}=5.6 \times 10^{-10}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOH}^{2}\left[\mathrm{OH}^{-}\right]\right.}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}=\frac{x^{2}}{0.15-x}
$$

$$
\text { if } x \ll 0.15,\left[\mathrm{OH}^{-}\right]=\sqrt{0.15 K_{b}}=\sqrt{(0.15)\left(5.6 \times 10^{-10}\right)}=9.17 \times 10^{-6} \mathrm{M}
$$ (note approximation was valid)

$$
\mathrm{pH}=14.00+\log \left[\mathrm{OH}^{-}\right]=8.96
$$

c) for a solution of $0.150 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{HAc})$:

$$
\begin{aligned}
& \text { As in part }(\mathrm{a}),\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{0.150 K_{a}}=\sqrt{(0.150)\left(1.8 \times 10^{-5}\right)}=0.0016 \mathrm{M} \\
& \mathrm{pH}=2.78
\end{aligned}
$$

8.28) Write the expression for the solubility constants of the following compounds: (a) AgI , (b) $\mathrm{Hg}_{2} \mathrm{~S}$, (c) $\mathrm{Fe}(\mathrm{OH})_{3}$, (d) $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$.
a) $\mathrm{AgI} \leftrightarrows \mathrm{Ag}^{+}+\mathrm{I}^{-} ; K_{s p}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{I}^{-}\right]$
b) $\mathrm{Hg}_{2} \mathrm{~S} \leftrightarrows \mathrm{Hg}_{2}{ }^{2+}+\mathrm{S}^{2-} ; K_{s p}=\left[\mathrm{Hg}_{2}{ }^{2+}\right]\left[\mathrm{S}^{2-}\right]$
c) $\mathrm{Fe}(\mathrm{OH})_{3} \leftrightarrows \mathrm{Fe}^{3+}+3 \mathrm{OH}^{-} ; K_{s p}=\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}$
d) $\mathrm{Ag}_{2} \mathrm{CrO}_{4} \leftrightarrows 2 \mathrm{Ag}^{+}+\mathrm{CrO}_{4}{ }^{2-} ; K_{s p}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}{ }^{2-}\right]$
8.29) Use the data in Table 8.4 to estimate the molar solubilities of (a) BaSO_{4}, (b) $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$, (c) $\mathrm{Fe}(\mathrm{OH})_{3}$, (d) $\mathrm{Hg}_{2} \mathrm{SO}_{4}$ in water.
a) For the molar solubility of BaSO_{4} :

$$
\begin{aligned}
& K_{s p}=1.1 \times 10^{-10}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right] \\
& S=\sqrt{1.1 \times 10^{-10}}=1.0 \times 10^{-5} \mathrm{M}
\end{aligned}
$$

b) $\mathrm{Ag}_{2} \mathrm{CrO}_{4} \quad \mathrm{~K}_{\text {sp }}=9 \times 10^{-12}$ (Handbook of Chemistry and Physics)
$9 \times 10^{-12}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}{ }^{2-}\right]=(\mathrm{x})(2 \mathrm{x})^{2}=4 \mathrm{x}^{3}$

$$
x=S=\left(\frac{9 \times 10^{-12}}{4}\right)^{1 / 3}=1.3 \times 10^{-4} \mathrm{M}
$$

c) $\mathrm{Fe}(\mathrm{OH})_{3}$

$$
\begin{aligned}
& K_{s p}=\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}=2.0 \times 10^{-39}=(x)(3 x)^{3}=27 x^{4} \\
& x=S=\left(\frac{2.0 \times 10^{-39}}{27}\right)^{1 / 4}=9.3 \times 10^{-11} \mathrm{M}
\end{aligned}
$$

d) $\mathrm{Hg}_{2} \mathrm{SO}_{4} \quad \mathrm{~K}_{\text {sp }}$ unknown.....
8.31) Thermodynamic data can be used to predict the solubilities of compounds that would be very difficult to measure directly. Calculate the solubility of mercury(II) chloride in water at $25^{\circ} \mathrm{C}$ from standard Gibbs energies of formation.

$$
\begin{aligned}
& \mathrm{HgCl}_{2}(\mathrm{~s}) \leftrightarrows \mathrm{Hg}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \\
& \Delta G_{r}^{o}=(164.40)+2(-131.23)-(-178.6)=80.54 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

$$
\Delta G_{r}^{o}=-R T \ln K
$$

$$
K_{s p}=K=e^{\frac{-\Delta G_{r}^{o}}{R T}}=e^{\frac{-80.54 \times 10^{3}}{(8.31451)(298)}}=7.64 \times 10^{-15}
$$

$$
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Hg}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}=(\mathrm{x})(2 \mathrm{x})^{2}=4 \mathrm{x}^{3}
$$

$$
x=S=\left(\frac{7.64 \times 10^{-15}}{4}\right)^{1 / 3}=1.24 \times 10^{-5} \mathrm{M}
$$

8.30) Use the data in Table 8.4 to estimate the solubility of each sparingly soluble substance in its respective solution: (a) silver bromide in $1.4 \times 10^{-3} \mathrm{M} \mathrm{NaBr}(\mathrm{aq})$, (b) magnesium carbonate in $1.1 \times 10^{-5} \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$, (c) lead(II) sulfate in $0.10 \mathrm{M} \mathrm{CaSO}_{4}(\mathrm{aq})$, (d) nickel(II) hydroxide in $2.7 \times 10^{-5} \mathrm{M} \mathrm{NiSO}_{4}(\mathrm{aq})$.
a) AgBr in $1.4 \times 10^{-3} \mathrm{M} \mathrm{NaBr}$

$$
\begin{aligned}
& K_{s p}=7.7 \times 10^{-13}=\left[\mathrm{Ag}^{+}\right][\mathrm{Br}] \\
&=(x)\left(x+1.4 \times 10^{-3}\right) \\
& \approx x\left(1.4 \times 10^{-3}\right) \\
& x=7.7 \times 10^{-13} / 1.4 \times 10^{-3}=5.5 \times 10^{-10} \mathrm{M}
\end{aligned}
$$

b) MgCO_{3} in $1.1 \times 10^{-5} \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
K_{s p}=1.0 \times 10^{-5}=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]
$$

$$
1.0 \times 10^{-5}=(x)\left(x+1.1 \times 10^{-5}\right)
$$

If $x \gg 1.1 \times 10^{-5}, 1.0 \times 10^{-5}=x^{2}$
$x=0.003 \mathrm{M}$ (which indeed is much larger than 1.1×10^{-5})
c) PbSO_{4} in $0.10 \mathrm{M} \mathrm{CaSO}_{4}$

$$
\begin{aligned}
K_{s p}= & \left.1.6 \times 10^{-8}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right] \approx(x)(0.10) \quad \text { (assuming } x \ll 0.10\right) \\
& x=1.6 \times 10^{-7} \mathrm{M}
\end{aligned}
$$

d) $\mathrm{Ni}(\mathrm{OH})_{2}$ in $2.7 \times 10^{-5} \mathrm{M} \mathrm{NiSO}_{4}$
$K_{s p}=6.5 \times 10^{-18}=\left[\mathrm{Ni}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=\left(x+2.7 \times 10^{-5}\right)(2 x)^{2}$ if $x \ll 2.7 \times 10^{-5}, 6.5 \times 10^{-18}=\left(2.7 \times 10^{-5}\right) 4 x^{2}$
$x=2.5 \times 10^{-7} \mathrm{M}$ (which is sufficiently less than 2.7×10^{-5})

