Thursday, September 28, 2023
Please budget your time carefully and show all work.

$$
\begin{aligned}
& \mathrm{R}=8.3145 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}=0.082058 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& 1 \mathrm{~atm}=101.325 \mathrm{kPa}=760 \text { Torr }=1.01325 \text { bar }\left(1 \mathrm{bar}=10^{5} \mathrm{~Pa}\right) ; \quad 1 \mathrm{~L}=1 \mathrm{dm}^{3}
\end{aligned}
$$

(1) 1.5 moles of an ideal gas, for which $\bar{C}_{v}=3 \mathrm{R} / 2$, is initially at $20.0^{\circ} \mathrm{C}$ and 10.0 bar and undergoes a 2 -stage transformation. For each stage described below, calculate $q, w, \Delta U$, and ΔH. (20 pts)
a) The gas is expanded isothermally and reversibly until the volume doubles.

$$
\text { isothermal, ied ges: } \Delta u=\Delta t=0
$$

$$
\begin{aligned}
& W=-q=-\int P d V=-\int n R T \frac{d V}{V}=-n R T \ln \frac{V_{f}}{V_{i}}=-n R T \ln 2 \\
&=-(1.5)(8.3145)(293.15) \ln 2 \\
&=-2534 J \mathrm{k} \\
&=-2.5 \quad k J
\end{aligned}
$$

b) Beginning at the end of the st stage, the temperature is raised to $80.0^{\circ} \mathrm{C}$ at constant volume.

$$
\begin{aligned}
& \text { anstent } V \text {, so } \omega=0 \\
& \Delta u=q=n \int \bar{C}_{v} d T=(1.5)(1.5)(8.3145)(80-20) \\
& =1122 \mathrm{~J}=1.1 \mathrm{~kJ} \\
& \Delta H=\Delta U+\Delta(P V) \\
& =\Delta U+n R \Delta T \\
& =1122+(1.5)(8.3145)(60)=1870 J=1.9 \mathrm{~kJ}
\end{aligned}
$$

(2) Two moles of an ideal monatomic gas initially at a pressure of 1.00 bar and $25^{\circ} \mathrm{C}$ is compressed adiabatically by application of a constant external pressure of 15.00 bar until the final pressure of the gas reaches 10.00 bar. Assume the gas has molar heat capacity $\bar{C}_{v}=$ $3 \mathrm{R} / 2$ and is independent of temperature. (15 pts)
a) What is the heat absorbed by the gas?

$$
a d i a b a t i c \text {, so } g=0
$$

b) What is the final temperature of the gas? ideal gas, so $\Delta u=\int C_{v} d T$

$$
\begin{aligned}
\therefore n \bar{C}_{v}\left(T_{f}-T_{i}\right) & =-(15.00)\left(V_{f}-V_{i}\right) \\
n \frac{3}{2} R\left(T_{f}-T_{i}\right) & =-(15.00)\left[\frac{n R T_{f}}{P_{f}}-\frac{n R T_{i}}{P_{i}}\right] \\
\frac{3}{2}\left(T_{f}-T_{i}\right) & =-(15.00)\left(\frac{T_{f}}{P_{f}}-\frac{T_{i}}{P_{i}}\right) \\
1.5\left(T_{f}-298\right) & =-(15.00)\left(\frac{T_{f}}{10.00}-\frac{299}{1.00}\right)
\end{aligned}
$$

$$
0.1 T_{f}-29.8=-\frac{T_{f}}{10}+298
$$

$$
0.2 T_{f}=327.8
$$

$$
T_{f}=1639 \mathrm{k}
$$

(3) The normal melting point of tin is $231.9^{\circ} \mathrm{C}$, with an enthalpy of fusion $\Delta H_{f u s}^{o}$ of $7.07 \mathrm{~kJ} / \mathrm{mol}$. The heat capacities (\bar{C}_{p}) are $28.1 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ for the solid and $30.2 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ for the liquid. Assume these latter values are temperature independent. (20 pts)
a) Calculate the entropy change of the system when one mole of liquid tin, supercooled $55^{\circ} \mathrm{C}$ below its normal melting temperature, is frozen.

$\Delta S_{1}=\int_{450.05}^{505.05} c_{p, 2} \frac{d T}{T}=(30.2) \ln \frac{505.05}{450.05}=3.48 \mathrm{~J} / \mathrm{K}$

$$
\Delta S_{2}=-\frac{\Delta H_{f}}{T}=\frac{-7.07 \times 10^{3}}{505.05}=-14.00 \mathrm{~J} / 12
$$

$\Delta S_{3}=\int_{505,05}^{450.05} C_{p, 5} \frac{d T}{T}=(28.1) \ln \frac{430.05}{505,05}=-3.24 \mathrm{~J} / \mathrm{K}$

$$
\Delta S=\Delta S_{1}+\Delta S_{2}+\Delta S_{3}=-13.8 \quad J V
$$

b) The standard enthalpy of fusion at the temperature of part (a) is $6.95 \mathrm{~kJ} / \mathrm{mol}$. Determine $\Delta S_{\text {surf }}$ and $\Delta S_{\text {univ }}$ for the process of part (a) and confirm that it is spontaneous.

$$
\begin{aligned}
\Delta S_{\text {sur }} & =\frac{- \text { q}_{\text {res }}^{s}}{T_{\text {sur }}}=\frac{\left(-\Delta H_{\text {nus }}(450.05)\right)}{450.05}=\frac{6.95 \times 10^{3}}{450.05} \\
& =15.44 \pm 112 \\
\Delta S_{\text {una }} & =\Delta S_{\text {Mys }}+\Delta S_{\text {sur }}=-13.8+15.4=1.65112
\end{aligned}
$$

(4) At $1000 \mathrm{~K}, \Delta H_{r}^{o}=-123.77 \mathrm{~kJ}$ for the reaction (15 pts)

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

with $\bar{C}_{p}\left(\mathrm{~N}_{2}\right)=3.052 \mathrm{R}, \bar{C}_{p}\left(\mathrm{H}_{2}\right)=3.466 \mathrm{R}$, and $\bar{C}_{p}\left(\mathrm{NH}_{3}\right)=4.217 \mathrm{R}$. Calculate ΔH_{f}^{o} of $\mathrm{NH}_{3}(\mathrm{~g})$ at 300 K from this information. Assume the heat capacities are independent of temperature.

$$
\begin{aligned}
& \mathrm{N}_{2}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \xrightarrow{\Delta \mathrm{H}_{r}(300 \mathrm{~K})} 2 \mathrm{NH}_{3}(\mathrm{~s}) \\
& \downarrow \Delta H_{1} \quad \uparrow \Delta H_{3} \\
& \mathrm{~N}_{2}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~s}) \xrightarrow[\Delta \mathrm{H}_{2}]{\Delta \mathrm{H}(100 \mathrm{~K})} 2 \mathrm{NH}_{3}(\mathrm{~s}) \\
& \Delta H_{1}=\int_{300}^{1000} C_{p, N_{2}} d T+3 \int_{300}^{1000} C_{p_{1} H_{2}} d T \quad \Delta H_{2}=\Delta H_{r}(1000 K) \\
& \Delta H_{3}=2 \int_{1000}^{300} C_{p_{1} N H_{3}} d T \\
& \Delta H_{r}(300 K)=\Delta H_{r}(1000 K)+\int_{1000}^{300}\left[2 C_{p, N H_{3}}-C_{p, N}-3 C_{p,} H_{2}\right] d T \\
& =-123.77 \times 10^{3}+[2 R 4.217-R 3.02-3 R 3.466](-700) \\
& =-123.77 \times 10^{3}+(29194) \\
& =-94,576 J=-94,58 \mathrm{~kJ} \\
& \Delta H_{f}\left(N H_{3}\right)=\frac{1}{2} \Delta H_{r}=-47.29 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

(5) At $25^{\circ} \mathrm{C}$, a given reaction has a standard reaction enthalpy ΔH_{r}^{o} of $-6.5 \mathrm{~kJ} / \mathrm{mol}$ and standard reaction entropy ΔS_{r}^{o} of $-20 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. Determine if this reaction is spontaneous at this temperature by calculating $\Delta \mathrm{S}_{\text {univ. }}$ (10 pts)

$$
\begin{aligned}
& \Delta S_{s \partial s}=\Delta S_{\sigma}^{0}=-20 \mathrm{~J} / \mathrm{K} \\
& \Delta S_{\text {sur }}=\frac{-\Delta H_{r}}{T_{\text {sur }}}=\frac{+6.5 \times 10^{3}}{298}=21.8 \mathrm{~J} / \mathrm{K} \\
& \Delta S_{\text {univ }}=+1.8 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

(6) Short answers (be as specific/accurate as possible): (15 pts)
(a) Give one accurate statement of the 2nd law of thermodynamics
possibilities, I in a cyclic process, you call, extract hest from a hot reservoir a perform an equivalent ant. of work
2) $\oint \frac{d q}{T} \leq 0$
3) Δ suniv $\geqslant 0$
(b) Under what general conditions is $\Delta \mathrm{S}_{\text {sys }}<0$ for a spontaneous process?

$$
\Delta S_{\text {sur r }}>0 \text { ard } \Delta S_{\text {sur }}>\left|\Delta S_{\text {says }}\right\rangle
$$

(c) The spontaneous mixing of two ideal gases at constant T and P is entirely due to what? the entropy of the system increases
(d) What is the thermodynamic reference state for enthalpy and how does this differ from that of the entropy?
enthalpy: most stable phase of the clement at $P=1$ bar entropy: perfect crystalline substance of 0 K
(e) If only pressure-volume work is considered, when is heat a state function? (explain your answer)
when constant volume, since $\Delta u=q v$ when
constant pressie, since $\Delta H=q_{p}$

