(1)
(a) Calculate $q, w, \Delta U$, and ΔH for the reversible isothermal expansion at 300 K of 5.00 mol of an ideal gas from 500 to $1500 \mathrm{~cm}^{3}$.
(b) What would ΔU and w be if the expansion connects the same initial and final states as in (a) but is done by having the ideal gas expand into vacuum?
(c) Likewise, if the gas expands against a constant pressure of 10 bar, how much work is done by the gas?
(a) isothermal, so $\Delta U=\Delta H=0$ for an ideal gas
$\omega=-\int P d V$ since reversible

$$
\begin{aligned}
& =-\int \frac{n R T}{V} d V=-n R T \int \frac{d V}{V}=-n R T \ln \frac{V_{f}}{V_{i}} \\
& =-(5.00)(8.3145)(300) \ln \frac{1500}{500}=-13702 \mathrm{~J} \\
& =-13.7 \mathrm{~kJ} \\
& \Delta u=0=q+\omega \text {, so } q=+13.7 \mathrm{~kJ}
\end{aligned}
$$

(b) Free expansion: $\omega=-\int P_{\text {ext }} d V=0$ since $P_{\text {ext }}=0$ still is thermal, so $\Delta U=\Delta H=0$ but now $g=0$ too
(c) const pressure expansion: $D=-\int P_{\text {ext }} d V=-P_{\text {ext }} \int d V$

$$
\omega=-P_{\operatorname{ext}} \Delta V
$$

Chis is work dove on the gas
Work dram by the gas is +Text ΔV

$$
\begin{aligned}
\omega & =(10 \mathrm{bar}) \times \frac{10^{5} \mathrm{~Pa}}{b a r} \times(1500-500) \times\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)^{3} \\
& =+1000 \mathrm{~J}=+1.0 \mathrm{RJ}
\end{aligned}
$$

(2) A nearly flat bicycle tire becomes noticeably warmer after it has been pumped up. Approximate this process as a reversible adiabatic compression. Assume the initial pressure and temperature of the air before it is put into the tire to be $P_{i}=1.00$ bar and $T_{i}=298 \mathrm{~K}$. The final volume of the air in the tire is $V_{f}=1.00 \mathrm{~L}$ and the final pressure is $P_{f}=5.00 \mathrm{bar}$. Calculate the final temperature of the air in the tire. Assume that $\bar{C}_{v}=5 \mathrm{R} / 2$.
go ahead or k start of $\left(\frac{T_{f}}{T_{i}}\right)=\left(\frac{v_{f}}{V_{i}}\right)^{-R / \bar{c}_{i}}$

$$
\begin{aligned}
& \Rightarrow T_{f}=(298 \mathrm{~K})\left(\frac{1.00}{5.00}\right)^{-2 / 7}=472 \mathrm{~K}
\end{aligned}
$$

(3) For a certain ideal gas, $\bar{C}_{v}=2.5 \mathrm{R}$ at all temperatures. Calculate $q, w, \Delta U$, and ΔH when 2.00 mol of this gas undergoes each of the following processes:
(a) a reversible isobaric expansion from $(1.00 \mathrm{~atm}, 20.0 \mathrm{~L})$ to $(1.00 \mathrm{~atm}, 40.0 \mathrm{~L})$
(b) a reversible isochoric change of state from $(1.00 \mathrm{~atm}, 40.0 \mathrm{~L})$ to $(0.500 \mathrm{~atm}, 40.0 \mathrm{~L})$
(c) a reversible isothermal compression from ($0.500 \mathrm{~atm}, 40.0 \mathrm{~L}$) to $(1.00 \mathrm{~atm}, 20.0 \mathrm{~L})$.

Also calculate $q, w, \Delta U$, and ΔH for the cycle that consists of steps (a), (b), and (c).
note: I'm going to use L-ation units for energy in this problem
(a)

$$
\begin{aligned}
W & =-\int P d V=-P \Delta V \text { since isobaric o reversible } \\
& =-(1.00 \mathrm{Atm})(20.0 \mathrm{~L})=-20.0 \text { L-atm }
\end{aligned}
$$

$\Delta u=\int C_{v} d T$ since it's on ideal gus

$$
=(2.00 \mathrm{~mol})(2.5 R)\left(T_{f}-T_{i}\right)
$$

$$
\begin{aligned}
T_{f} & =\frac{P_{f} V_{f}}{n R}=\frac{(1.00)(40.0)}{(2.00)(0.08206)} \\
& =243.7 \mathrm{~K}
\end{aligned}
$$

h.kevise,
so $\Delta u=50.0$ L-atm

$$
\begin{aligned}
q=\Delta u-\omega=50.0 & -(-20.0)=70.0 \text { L-atm } \\
\Delta H=\Delta u+\Delta(P v) & =\Delta u+p \Delta v \quad \text { (Isobaric) } \\
& =50.0+(1.00)(20.0) \\
& =70.0 \text { L-atm }=q p
\end{aligned}
$$

(b) isochoric $\quad 1.00 \mathrm{~atm} \rightarrow 0.000 \mathrm{~atm} \mathrm{a} 40.0 \mathrm{~L}$

$$
\begin{aligned}
& T_{\lambda}=\frac{R_{\Lambda} V_{i}}{n R}=\frac{(1.00)(40.0)}{(2.00)(0.08206)}=243.7 \mathrm{~K} \\
& T_{f}=121.9 \mathrm{~K}
\end{aligned}
$$

$\omega=0$ since 150 Choric

$$
\begin{aligned}
\Delta u=g_{v}=\int C_{v} d T & =(2.00)(2.5 R)(-121.8) \\
& =-50.0 \text { L-atm }
\end{aligned}
$$

$$
\begin{aligned}
\Delta H=\Delta U+\Delta(P V) & =\Delta u+v \Delta P \\
& =-50.0+(40.0)(0.500-1.00) \\
& =-70.0 \quad L-a+m
\end{aligned}
$$

(c) reversible, isothermal $0.500 \mathrm{~atm} \rightarrow 1.00 \mathrm{~atm}$

$$
40,0 \mathrm{~L} \rightarrow 20.0 \mathrm{~L}
$$

from befne $T=121.9 \mathrm{~K}$
$\Delta U=\Delta H=0$ since, deal gas t isothermal

$$
\begin{aligned}
f=-\omega \quad \text { of } \omega & =-\int P d V=-n R T \int \frac{d V}{V}=-n R T \ln \frac{V_{f}}{V_{i}} \\
& =-(2.00)(0.08206)(121.9) \ln \frac{20.0}{40.0} \\
\psi & =13.9 \text { L-atm } \\
q & =-13.9 \text { L-atm }
\end{aligned}
$$

(d) cyde: $a \rightarrow b \rightarrow c$

$$
\begin{aligned}
& q=70.0+(-50.0)+(-139)=6.10 \text { L-atim } \\
& \omega=-20.0+0+13.9=-6.10 \text { L-ation } \\
& \Delta u=\Delta H=0
\end{aligned}
$$

(4)
(a) Starting with the total differential of P as a function of V and T, obtain an expression for ΔP in terms of α (thermal expansion coefficient) and κ (isothermal compressibility) for the situation where both the temperature and volume change in a general process. Show all work.
(b) A rigid container is filled completely with liquid water and sealed at $25.0^{\circ} \mathrm{C}$ and a pressure of 1.00 bar. What is the final pressure if the temperature of the system is raised to $60.0^{\circ} \mathrm{C}$? Under these conditions $\alpha_{\text {water }}=2.04 \times 10^{-4} \mathrm{~K}^{-1}$ and $\kappa_{\text {water }}=4.59 \times 10^{-5} \mathrm{bar}^{-1}$ are constants. (Note: α is not really a constant - it rises to $5.16 \times 10^{-4} \mathrm{~K}^{-1}$ at $60^{\circ} \mathrm{C}$ but don't worry about that for this problem)
(a) $P=P(V, T)$

$$
\begin{aligned}
& \text { VT) } \quad d P=\left(\frac{\partial P}{\partial V}\right)^{\prime} d V+\left(\frac{\partial P}{\partial T}\right)_{V} d T \\
& \text { but } \alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P} \text { ald } R=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}
\end{aligned}
$$

$$
a l\left(\frac{\partial p}{\partial T}\right)_{N}=\frac{\alpha}{R}
$$

$$
\text { hence } \quad d P=-\frac{1}{V K} d V+\frac{\alpha}{K} d T
$$

$$
\Delta P=-\int_{V_{n}}^{V_{f}} \frac{1}{k} \frac{d V}{V}+\int_{T_{n}}^{T f} \frac{\alpha}{k} d T
$$

(b) In a rigid intainen, $d V=0$, so
assuming T independence of α and R,

$$
\Delta P=\frac{\alpha}{k} \Delta T=\frac{2.04 \times 10^{-4}}{4.59 \times 10^{-5}}(60.0-25.0)=156 \mathrm{bar}
$$

$$
\text { so } P_{f}=\Delta P_{1}+P_{i}=157 \text { bor }
$$

(5) Calculate the molar heat of vaporization of water at $25^{\circ} \mathrm{C}$. The heat of vaporization of water at $100^{\circ} \mathrm{C}$ is $40.68 \mathrm{~kJ} / \mathrm{mol}$.
use the cycle:

$$
\begin{aligned}
& \Delta H_{\text {ap }}\left(25^{\circ} \mathrm{C}\right)=\Delta H_{1}+\Delta H_{\text {veg }}\left(100^{\circ} \mathrm{C}\right)+\Delta H_{2} \\
& \Delta H_{1}=\int_{25} C_{p}\left(H_{2} O(\mathrm{l})\right) d T=(75.3)(100-25)=5647 \mathrm{~J} / \mathrm{mol} \\
& \Delta H_{2}=\int_{100}^{25} C_{p}\left(H_{2} O(\mathrm{~g})\right) d T=(33.6)(25-100)=-2520 \mathrm{~J} / \mathrm{mal}
\end{aligned}
$$

$$
\begin{aligned}
\Delta H_{\operatorname{ag}}\left(25^{\circ} \mathrm{C}\right) & =5647+40,680-2520 \\
& =43,807 \mathrm{~J}=43.8 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

