Chem 531: Problem Set #8

Due in class: Thursday, November 30th

- (1) Calculate the value of the mean ionic molality m_{\pm} in 5.0 x 10⁻⁴ molal solutions of (a) KCl, (b) Ca(NO₃)₂, and (c) ZnSO₄. Assume complete dissociation.
- (2) Express the mean ionic activity a_{\pm} in terms of m_{+} and m_{-} for (a) NaCl, (b) MgBr₂, (c) Li₃PO₄, and (d) Ca(NO₃)₂. Assume complete dissociation.
- (3) Calculate the mean ionic molality and mean ionic activity of a $0.150 \, m \, \text{Ca}(\text{NO}_3)_2$ solution for which the mean ionic activity coefficient is 0.165.
- (4) Calculate the ionic strength I, the mean ionic activity coefficient γ_{\pm} , and the mean ionic activity a_{\pm} for a 0.0325 m solution of K₄Fe(CN)₆ at 298 K. For the latter two quantities, utilize the Debye-Hückel limiting law.