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reason for Bose-Einstein condensation: If the particle den-
sity exceeds a critical value, the additional particles must
be provided by the ground state (second) term in Eq. (17)
or by the rest R. The ground state term becomes extensive
if

1—z=0(V"Y, (19)

which we assume from now on. Note that in the thermo-
dynamic limit N/V is constant, but not necessarily z. We
now show that the terms in R in Eq. (18) are small as a
consequence of Eq. (19). The double integral can be inte-
grated in planar polar coordinates
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Hence the correspondmg term is O[Llog(1—2z)]
=0(L?log L) ¢O(L?). The term is small compared with
the ground state term for all values of z<1. The one-
dimensional integral in Eq. (18) can be simply estimated
after splitting it up:
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The corresponding term is O(L>?)<O(L?).
Finally, in the last two terms of Eq. (18) the nature of
the one-particle energy spectrum is important:
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Summing up, all terms of the rest R in Eq. (17) are small

compared with the ground state term in the thermody-
namic limit. This is the common belief.
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It is sometimes

“proved” by simple physical arguments that real gases get cooler when

experiencing a free expansion. These arguments are in some way incorrect since the result is in
contradiction with experiment, at least for some gases. We show how these arguments can be
corrected and find that there is an “inversion temperature” for all real gases. Values of the
inversion temperature can be easily estimated and are compared with experiments.

L. INTRODUCTION

In general, textbooks on thermodynamics give the free
(or Joule) expansion and the throttling process (or Joule-
Kelvin expansion) of gases as first examples of irreversible
processes. Most of them study in detail the temperature
change of real gases in the case of a throttling process
(which is used for liquefaction) and consider free expan-
sion only for perfect gases.

In some textbooks, however, temperature variation of
real gases during a Joule expansion is considered. One then
finds two different methods for dealing with the matter
either authors use a phenomenological equation of state'™
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and the physical meaning of the phenomenon is hidden in
the temperature dependence of the coefficients of the equa-
tion, or they use a very appealing physical argument*®
which shows that a real gas always gets cooler during a free
expansion. Now it is known that a Joule expansion can
result in an increasing temperature for some gases such as
helium and hydrogen. So this qualitative physical argu-
ment must be in some way incorrect.

In the present paper, we first review briefly the process
of Joule expansion (Sec. II), we then examine the physical
argument proposed as quite general by some textbooks
(Sec. III). In Sec. IV, we show how this argument can be
corrected and find that there is an inversion temperature
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Fig. 1. A Joule expansion.

for all real gases undergoing a free expansion. This is com-
pared with the well-known inversion temperature observed
in throttling processes.l'5’7’8 At last, in Sec. 5, we try to
give estimates of the inversion temperature and compare
them with the experimental values obtained by using the
second virial coefficient.

II. THE JOULE EXPANSION

A Joule expansion is one in which the gas exchanges no
work and no heat with its surroundings. Such is the case,
for example, when the gas, initially confined in a thermally
isolated vessel, expands into a vacuum (Fig. 1). Thus, ac-
cording to the first law of thermodynamics, a Joule expan-
sion causes no change in the internal energy E of the gas.

For a perfect gas, the internal energy E is a function of
the temperature T only and thus an expansion which keeps
the energy constant is also isothermal. For real gases, how-
ever, the internal energy depends on 7 and on the volume
V. This is due to the interaction between molecules which
is a function of their relative distances. The temperature
change during a free expansion can be calculated if one
knows the so-called Joule coefficient

() =) ) -248), o
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Since the heat capacity at constant volume C}, is always
positive, the sign of the temperature variation is given by
the sign of (GE/3V) .

The Joule coefficient can also be calculated knowing Cy
and the equation of state of the gas since*

aT 1 ap )
e I
E v

III. A (TOO) SIMPLE QUALITATIVE ARGUMENT

The following argument is commonly made to explain
‘the temperature change that occurs in a free expansion.

The internal energy of a gas is the sum of the kinetic
energy Ey;, of its N molecules and of the potential energy U
resulting from the molecular interactions

E=Ey+U. (3)

The kinetic energy depends only on the temperature T
and is always an increasing function of T.° Since in a gas
the density is low, the potential energy can be considered as
the sum of the potential energies of all pairs of molecules.
The interaction energy u(r) between two molecules as a
function of their relative separation r is shown in Fig. 2. At
large distances (7> r,) there are weak attractive forces and
u(r) increases slowly with . At small separation (r<ry)
the forces become strongly repulsive and u(r) decreases
very rapidly with r. Real gases always have an average

846 Am. J. Phys., Vol. 61, No. 9, September 1993

u(r

ror

={

Fig. 2. The potential energy of two molecules as a function of their
separation r.

intermolecular separation 7 greater than r, which corre-
sponds to the density of the liquid, so that U must increase
with the separation of molecules.

In a free expansion, since V increases, it is clear that 7
increases and so must U. Now E is constant in such an
expansion, so E,;, must decrease: this can be done only if T’
decreases. The conclusion is then that a real gas always
cools during a Joule expansion.

This effect is very weak and can hardly be experimen-
tally verified. However, for some gases, experiments lead to
the inverse observation. For instance, helium at usual tem-
perature (and pressure) is warmer after a free expansion.
The above explanation, although very simple and appeal-
ing, must be wrong in some way.

IV. A CORRECT QUALITATIVE ARGUMENT

The reason for this discrepancy is in fact quite clear:
what we must consider is not the potential energy taken at
the average intermolecular separation 7 but instead the av-
erage potential energy itself. This is given by

NWN—1) f[f, u(r)e**T dr
= 2 fffye—u/der . (4)

The range over which u(7) is not negligible is at most a
few nanometers and is very much smaller than the size (of
order V'/?) of the container. The integral in the numerator
is then practically independent of ¥ and the denominator is

ffLe—"/"T dr=V, (5)

so that
,__L(E 1 (39U
=_c_,,(aV)T“_cy(aV)T

N2
:+meLu(r)e'"/kT dr. 6)

The heating or cooling of the gas during a free expansion
then depends on the sign of the integral in Eq. (6). Since

d u u? u

77w ) | =% (77
>0 for all u(r)0, N
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the integrand increases monotically at every value of r as
the temperature increases, and so does J. Let us write

1(T)=A1(T)+A2(T)=J'f[ -
<n

+fJI dr ue— /T,
>n
(8)

where r, is the intermolecular distance for which u(7;) =0.

Due to the mutual “impenetrability” of the atoms, u(r)
becomes very large at small r. 4,(7") is then always posi-
tive, increasing monotically from zero to infinity as the
temperature increases; more exactly, we show in the Ap-
pendix below that this is true if u(r) diverges at small r at
least like #~3 which is the case for all Practlcal models (the
Lennard-Jones model takes u(7) ~7~ 2 for r—0). A (T) is
always negative and increasing with 7. I(7T) is then a
monotically increasing function, negative for 7=0 and
positive for T - .

So I(T) must change its sign for a unique “inversion
temperature” T;. If T < T, I and J are negative, the gas is
cooler after a free expansion; if 7> T';, J> 0 and the gas is
warmer.

The physical reason for that phenomenon can be easily
elucidated: if the temperature is high, the molecules have
enough kinetic energy to come very close to each other, to
distances smaller than 7, thus making the average forces
repulsive; although the mean intermolecular distance is
much greater than r,, the interacting potential becomes so
high for »<r, that the repulsive part can overcome the
attractive one.

Such an inversion temperature exists for all real gases,
the value of which depends on the characteristics of the
intermolecular interaction potential.

Let us remark that the existence of an inversion temper-
ature comes directly from the fact that there is a high but
not infinitive repulsive part in u(r). For a hard sphere
repulsive part [u(r) = + o for r<ry), (3U/3V) r is always
pos1t1ve and the gas always cools i 1n a Joule expansion; that
is the case for a van der Waals gas>* since the parameter b,
which takes into account the “finite size” of the molecules,
is supposed temperature independent.’

Let us remark also that one finds by the above argument,
an inversion temperature 7; which is pressure indepen-
dent. This is because the analysis is restricted to dilute
gases (for which the average intermolecular distance 7 is
much larger than 7;). Indeed, it is only in this limit that
relation (4) is valid (or equivalently the third virial coef-
ficient negligible). Clearly, one would expect T, to de-
crease if the gas becomes less dilute, that is, if the pressure
increases. The same kind of phenomena is observed for the
Joule—Kelvin inversion temperature (throttling process):
as it is well known, this latter is pressure dependent 1247
but one finds a pressure 1ndependent result? if one takes for
U the sum of the potential energies of all pairs of molecules
[relation (4)].

V. ESTIMATES OF THE INVERSION
TEMPERATURE

To make an estimate of the value of T; we take for u(7)
the Lennard-Jones potential
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From the preceding analysis we may expect that the
smaller u,, the smaller T;. So it is not surprising that
helium which has a very small u, (that is why helium is so
hard to liquefy) gets hotter in a free expansion undertaken
at usual temperature.

Plugging u;;(r) into Eq. (6) one finds, since (dU/
dV) =0 for T=T,, the following equation for T;:

+
f dx x*f (x)e™ /XK1, (10)
0

In this model, T’ is then proportional to u,. A numer-
ical resolution gives

T =25 11)
=27 (

For example, for helium, the literature gives'® uy~7
x107* eV so that

T;(He)=200 K.
For hydrogen one gets'® uy~28x 10~

For most of the gases, u, is at least of the order of 1072
eV, and then 7;>2500 K.

To compare these results with experiments, the best is to
link the calculation of the Joule coefficient (2) to the sec-
ond virial coefficient B(T'). Indeed, the first correction to
the perfect gas equation of state is

4 eV, so that

» N N\?
= V+B(T)( ) (12)
which gives, when using Eq. (2),
=(£) =—kﬂd—3 (13)
), CyV?dT "

The sign of the Joule coefficient relies on the sign of
dB/dT, and the inversion temperature corresponds to the
maximum of B(T). The expenmental variations of B mea-
sured by Hollborn and Otto are given in Callen’s Book.”
One can see that the estimation given above is excellent for
helium, but twice too big for hydrogen. This might be due
to the fact that an interaction potential like Eq. (9) is too
simple to describe the interaction between two molecules
which are not monoatomic.

Finally, let us remark that our result (6) can be obtained
exactly when we replace in Eq. (13) B(T) by its theoret-
ical expression obtained by statistical mechanics®®

1
B(T)=3 ff dr[1—e—*(N/kTY (14)

But this result requires a much more elaborate theory
than the simple argument used above.
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APPENDIX

We vgant to prove that, if #(r) diverges at small r at least
like ™7,

Al(T)=J.j dr u(r)e— kT
r<ry

= J ] drrtu(rye“*T gr
0

has the two following properties:
(i) 4,(0)=0,

(ii) 41(+o)=+ .

Since ue **T is maximum for u=kT, and since

u(r) >0 for r<ry, we can write

kT
O<A1(T)<_ff dr,
e <

which clearly leads to point (i).
On the other hand, the integrand in 4,(7T) is always
positive and then

|

AI(T)>f‘

arru(r)e=*T dr>0,
r(T)

where r,(T) is the intermolecular distance for which u(7)
=kT. For r<ry, u(r) decreases monotically from + o to
0, s0 r,(T) is a well-defined function of 7, decreasing from
ry to 0 as T goes from O to + co.

For ry(T)<r<ry,

e—u/kT>1
e
leads to
47 (r
A(T)>— Pu(r) dr
€ Jn(h
and
. 47 n
lim Al(T)>—f Pu(r) dr.
Teo ¢ Jo

The integral in the right-hand side is infinite if u(7)
diverges at r=0 more rapidly than (or at least like) 3. If
it is the case 4,(+ o) =+ .
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The availability of video and frame grabbing technology for desktop computers permits a new
form of visualization and measurement in mechanics experiments. Simple systems such as
bouncing balls can be studied in detail and with enough precision to determine important aspects
of the motion. For example, the system can be used for introductory students to measure the
acceleration of gravity, g, and it also can be coupled with advanced mathematical techniques to
find the drag coefficient and elasticity of the bounce. Conventional spreadsheet programs can be
used to carry out all but the most mathematical treatments of the data. Examples of analyses
which were carried out by high school students through senior physics majors at college are

given.

I. INTRODUCTION

Mechanics experiments and demonstrations in under-
graduate physics often are carried out over a period of only
a few seconds or less. As a consequence, stroboscopic pic-
tures or elaborate encoding systems are used for quantita-

848 Am. J. Phys. 61 (9), September 1993

tive studies of the motion. These methods require either
large supply budgets, such as in the case of Polaroid pic-
tures, or commercial interface systems. Modern video cam-
eras of the ordinary domestic type, however, have the abil-
ity to take high shutter speed images at a very well known
and precise rate and can therefore be used as a tool for the
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