Matrix Representation of Wavefunctions and Operators in Quantum Chemistry

The following is a consequence of expanding a general wavefunction in a complete set of eigenfunctions

For a complete, orthonormal basis set $\left\{\phi_{n}\right\}$, $\left\langle\phi_{i}\middle|\phi_{j}\right\rangle = \delta_{ij}$

For general state functions Ψ_a and Ψ_b , one can then exactly write:

$$|\Psi_{a}\rangle = \sum_{k} |\phi_{k}\rangle a_{k}$$

$$|\Psi_{b}\rangle = \sum_{l} |\phi_{l}\rangle b_{l}$$

Furthermore, for a specified basis set it is sufficient to know just the coefficients a_k in order to calculate the function Ψ_a at any given point. The function Ψ_a can then also be completely specified by the column vector

$$\mathbf{a} = \left(\begin{array}{c} a_1 \\ a_2 \\ \vdots \\ a_n \end{array}\right)$$

By analogy, the function Ψ_b can be represented by the column vector \mathbf{b} .

The norm of the function Ψ_a is the same as the absolute square of the vector \mathbf{a} :

$$\langle \Psi_{a} | \Psi_{a} \rangle = \sum_{k} \sum_{l} a_{k}^{*} \langle \phi_{k} | \phi_{l} \rangle a_{l}$$
$$= \sum_{k} a_{k}^{*} a_{k} = \mathbf{a}^{\dagger} \cdot \mathbf{a} = |\mathbf{a}|^{2}$$

where \mathbf{a}^{\dagger} , the adjoint of \mathbf{a} , is the row vector $\mathbf{a}^{\dagger} = \begin{pmatrix} a_1^* & a_2^* & \cdots & a_n^* \end{pmatrix}$

For the overlap integral between Ψ_a and Ψ_b :

$$\left\langle \Psi_{a} \middle| \Psi_{b} \right\rangle = \sum_{k} \sum_{l} a_{k}^{*} \left\langle \phi_{k} \middle| \phi_{l} \right\rangle b_{l}$$
$$= \sum_{k} a_{k}^{*} b_{k} = \mathbf{a}^{\dagger} \cdot \mathbf{b}$$

Thus integration in this basis representation will be replaced by a scalar or inner product.

Now assume that application of some operator \hat{A} to Ψ_a results in the function Ψ_b :

$$|\Psi_b\rangle = \hat{A}|\Psi_a\rangle$$

In terms of our basis set,

$$|\Psi_b\rangle = \sum_l |\phi_l\rangle b_l = \sum_k \hat{A} |\phi_k\rangle a_k$$

A particular coefficient b_n in the definition of Ψ_b is obtained by multiplication on the left by $\langle \phi_n |$:

$$\sum_{l} \langle \phi_{n} | \phi_{l} \rangle b_{l} = b_{n}$$

$$= \langle \phi_{n} | \Psi_{b} \rangle = \sum_{k} \langle \phi_{n} | \hat{A} | \phi_{k} \rangle a_{k}$$

$$= \sum_{k} A_{nk} a_{k}$$

or in matrix notation: $\mathbf{b} = \mathbf{A} \cdot \mathbf{a}$

Thus the operator \hat{A} becomes the matrix A in the basis representation with matrix elements A_{ij} , and the effect of an operator acting on a function is transformed to a matrix-vector multiplication.

A hermitian operator corresponds to a hermitian matrix with the property

$$A_{ii} = A_{ii}^*$$

or
$$\mathbf{A} = \mathbf{A}^{\dagger}$$

Consider a 2nd operator $\hat{\mathbf{B}}$ acting on Ψ_b to yield another function Ψ_c that can be represented by the vector \mathbf{c} in our basis:

$$|\Psi_c\rangle = \hat{B}|\Psi_b\rangle = \hat{B}\hat{A}|\Psi_a\rangle$$

expansion gives:

$$\begin{split} \left| \Psi_{c} \right\rangle &= \sum_{i} \left| \phi_{i} \right\rangle c_{i} = \sum_{l} \hat{\mathbf{B}} \left| \phi_{l} \right\rangle b_{l} \\ &= \sum_{l} \sum_{k} B \left| \phi_{l} \right\rangle \left\langle \phi_{l} \right| \hat{\mathbf{A}} \left| \phi_{k} \right\rangle a_{k} \end{split}$$

The coefficients c_j are obtained by multiplication on the left with $\left<\phi_j\right|$:

$$c_{j} = \langle \phi_{j} | \Psi_{c} \rangle$$

$$= \sum_{l} \sum_{k} \langle \phi_{j} | \hat{\mathbf{B}} | \phi_{l} \rangle \langle \phi_{l} | \hat{\mathbf{A}} | \phi_{k} \rangle a_{k}$$

$$= \sum_{l} \sum_{k} B_{jl} A_{lk} a_{k}$$

which in matrix notation is: $\mathbf{c} = \mathbf{B} \cdot \mathbf{b} = \mathbf{B} \cdot \mathbf{A} \cdot \mathbf{a}$

So the operator product $\hat{B}\hat{A}$ becomes the matrix product $B\cdot A$ in the matrix representation.

Of course all of the above is strictly valid only for complete basis sets. For a finite basis set of M functions, $\langle \phi_i | \hat{A} \hat{B} | \phi_j \rangle \neq \sum_{k=1}^{M} \langle \phi_i | \hat{A} | \phi_k \rangle \langle \phi_k | \hat{B} | \phi_j \rangle$. The usage of finite basis sets in approximate methods of quantum chemistry will be discussed later in this course.

Expectation values in the matrix representation

$$\langle \Psi_a | \hat{\mathbf{A}} | \Psi_a \rangle = \sum_k \sum_l a_k^* \langle \phi_k | \hat{\mathbf{A}} | \phi_l \rangle a_l$$
$$= \mathbf{a}^{\dagger} \cdot \mathbf{A} \cdot \mathbf{a}$$

Matrix element of Â

$$\langle \Psi_a | \hat{\mathbf{A}} | \Psi_b \rangle = \sum_k \sum_l a_k^* \langle \phi_k | \hat{\mathbf{A}} | \phi_l \rangle b_l$$
$$= \mathbf{a}^{\dagger} \cdot \mathbf{A} \cdot \mathbf{b}$$

The unit operator (resolution of the identity) in a complete basis set:

$$\hat{\mathbf{I}} = \sum_{k} \left| \phi_{k} \right\rangle \left\langle \phi_{k} \right|$$

leads to the unit matrix **I**:

$$I_{ij} = \left\langle \phi_i \middle| \hat{\mathbf{I}} \middle| \phi_j \right\rangle = \sum_k \left\langle \phi_i \middle| \phi_k \right\rangle \left\langle \phi_k \middle| \phi_j \right\rangle = \delta_{ij}$$

Acknowledgements:

This document is a poor translation of the original lecture notes in German prepared by Prof. Dr. H.-J. Werner, Institut für Theoretische Chemie, Universität Stuttgart. Any errors are solely the product of the present author.