Chem 534: Problem Set \#1

Due in class: Thursday, Sept. 3rd
(1) Show that the Poisson distribution $P(m)=a^{m} \frac{e^{-a}}{m!}$ is normalized. Then calculate \bar{m} and the variance. (hint: directly calculating $\left\langle m^{2}\right\rangle$, which is needed for the variance, can be a bit tricky. Think about calculating $\langle x(x-1)\rangle$ instead)
(2) Assume that the probability of occupying a given energy state is given by the distribution $P(\varepsilon)=A e^{-\varepsilon / k T}$, where k is Boltzmann's constant.
(a) Consider a collection of three total states with the first state located at $\varepsilon=0$ and others at $k T$ and $2 k T$, respectively, relative to this first state. What is the normalization constant for this distribution?
(b) How would your answer change if there are five states with $\varepsilon=k T$ in addition to the single states at 0 and $2 k T$?
(c) Determine the probability of occupying the energy level $\varepsilon=k T$ for the cases in which one and five states exist at this energy.
(3) Use the method of Lagrange undetermined multipliers to show that the function

$$
-\sum_{j=1}^{N} P_{j} \ln P_{j}
$$

subject to the condition $\sum_{j=1}^{N} P_{j}=1 \quad$ is a maximum when P_{J} equals a constant.
(4) Consider a particle to be constrained to lie along a one-dimensional segment 0 to a. Quantum mechanics tells us that the particle is found to lie between x and $x+d x$ given by

$$
p(x) d x=\frac{2}{a} \sin ^{2} \frac{n \pi x}{a} d x
$$

where $n=1,2,3, \ldots$
(a) Show that $p(x)$ is normalized.
(b) Calculate the average position of the particle along the line segment.

