Chem 534: Problem Set \#3

Due in class: Thursday, Sept. 24th
(1) Consider a system of N distinguishable, independent particles, each of which has only two accessible states; a ground state of energy 0 and an excited state of energy ε. If the system is in equilibrium with a heat bath of temperature T, calculate A, U, S, and C_{v}. Sketch C_{v} versus T. Determine how your results would change if ε_{0} were added to both energy values (i.e., a change in the zero of energy)?
(2) Calculate the value of n_{x}, n_{y}, n_{z} for the case $n_{x}=n_{y}=n_{z}$ for a hydrogen atom in a box of dimension $1 \mathrm{~cm}^{3}$ if the particle has kinetic energy $3 k T / 2$ for $T=27^{\circ} \mathrm{C}$. What significant fact does this calculation illustrate?
(3) Using data from the NIST website, http://physics.nist.gov/PhysRefData/Handbook/periodictable.htm calculate the fractional population of the first few electronic energy levels of an oxygen atom at $25^{\circ} \mathrm{C}$.
(4) Calculate the entropy of 1 mole of argon at 298 K and 1 atm .

