**Most of these basis sets can be downloaded from
https://bse.pnl.gov/bse/portal
(otherwise try:
http://tyr0.chem.wsu.edu/~kipeters/basissets/basis.html)
**

**(Please cite appropriately and feel free to contact me if you
can't find them)**

H-He, B-Ne

"Gaussian Basis Sets for Use in Correlated Molecular Calculations.
I. The Atoms Boron through Neon and Hydrogen", Dunning, Jr., T. H. *J.
Chem. Phys.* **1989**, *90*, 1007-1023.

"Electron Affinities of the First-Row Atoms Revisited. Systematic
Basis Sets and Wave Functions", Kendall, R. A.; Dunning, Jr., T. H.;
Harrison, R. J. *J. Chem. Phys. ***1992**, *96*,
6796-6806.

"Gaussian basis sets for use in correlated molecular calculations.
IV. Calculation of static electrical response properties", Woon, D. E.;
Dunning, Jr., T. H. *J. Chem. Phys.* **1994**, *100*,
2975-2988.

Note: the diffuse s function in the aug-cc-pV5Z of He is incorrect in Table II, the value of 0.03109 should be replaced by 0.04664.

"Gaussian basis sets for use in correlated molecular calculations.
V. Core-valence basis sets for boron through neon", Woon, D. E.;
Dunning, Jr., T. H. *J. Chem. Phys.* **1995**, *103*,
4572-4585.

"Gaussian basis sets for use in correlated molecular calculations.
VI. Sextuple-zeta correlation-consistent sets for boron through neon",
Wilson, A. K.; van Mourik, T.; Dunning, Jr., T. H. *Journal of
Molecular Structure* (*Theochem*) **1996**, *388*,
339-349.

"Benchmark calculations with correlated molecular wavefunctions.
XIII. Potential energy curves for He_{2}, Ne_{2} and Ar_{2}
using correlation consistent basis sets through augmented sextuple
zeta", van Mourik, T.; Wilson, A.K.; Dunning, Jr., T.H., Mol. Phys. **1999**,
*96*, 529-547.

"Gaussian Basis Sets for Use in Correlated Molecular Calculations.
III. The second row atoms, Al-Ar", Woon, D. E.; Dunning, Jr., T. H., *J.
Chem. Phys. ***1993**, *98*, 1358-1371.

"Gaussian basis sets for use in correlated molecular calculations.
VIII. Standard and augmented sextuple zeta correlation consistent basis
sets for aluminum through argon", van Mourik, T.; Dunning, Jr., T.H., *Int.
J. Quantum Chem.* **2000**, *76*, 205-221.

"Gaussian basis sets for use in correlated molecular calculations.
X. The atoms aluminum through argon revisited", Dunning, Jr., T.H.;
Peterson, K.A.; Wilson, A.K. *Journal of Chemical Physics* **2001**,
*114*, 9244-9253.

"Accurate correlation consistent basis sets for molecular
core-valence correlation effects. The second row atoms Al - Ar, and the
first row atoms B - Ne revisted", Peterson, K.A.; Dunning, Jr., T.H. *Journal
of Chemical Physics* **2002**, *117*, 10548.

"Gaussian basis sets for use in correlated molecular calculations.
IX. The atoms gallium through krypton", Wilson, A.K.; Woon, D.E.;
Peterson, K.A.; Dunning, Jr., T.H. *Journal of Chemical Physics* **1999**,
*110*, 7667-7676.

"Parallel Douglas-Kroll energy and gradients in NWChem: Estimating
scalar relativistic effects using Douglas-Kroll contracted basis sets",
de Jong, W. A.; Harrison, R. J.; Dixon, D. A. *Journal of Chemical
Physics* **2001**, *114*, 48-53.

"Systematically Convergent Correlation Consistent Basis Sets for
Molecular Core-Valence Correlation Effects: The Third-Row Atoms Gallium
through Krypton", DeYonker, N.J.; Peterson, K.A.; Wilson, A.K. *Journal of
Physical Chemistry A* **2007**, *111*, 11383.

“Systematically convergent basis sets with relativistic
pseudopotentials. I. Correlation consistent basis sets for the post-d
group 13 – 15 elements”, Peterson, K.A. *Journal of Chemical Physics*
**2003**, *119*, 11099.

“Systematically convergent basis sets with relativistic
pseudopotentials. II. Small-core pseudopotentials and correlation
consistent basis sets for the post-d group 16–18 elements”, Peterson,
K.A., Figgen, D., Goll, E., Stoll, H., and Dolg, M. *Journal of
Chemical Physics* **2003**, *119*, 11113.

“On the spectroscopic and thermochemical properties of ClO, BrO, IO,
and their anions”, Peterson, K.A.; Shepler, B.C.; Figgen, D.; Stoll,
H., *Journal of Physical Chemistry A* **2006**, *110*,
13877. (revision of iodine basis sets and pseudopotentials)

"Systematically convergent basis sets for transition metals. I.
All-electron correlation consistent basis sets for the 3d elements Sc –
Zn", Balabanov, N.B.; Peterson, K.A. *J. Chem. Phys*. **2005**,
*123*, 064107.

"Basis set limit electronic excitation energies, ionization
potentials, and electron afﬁnities for the 3d transition metal atoms:
Coupled cluster and multireference methods", Balabanov, N.B.; Peterson,
K.A. *Journal of Chemical Physics* **2006**, 125, 074110 .

“Systematically convergent basis sets for transition metals. II.
Pseudopotential-based correlation consistent basis sets for the group
11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements”, Peterson, K.A.;
Puzzarini, C. *Theor. Chem. Acc.* **2005**, *114*, 283.

“Energy-consistent relativistic pseudopotentials and correlation
consistent basis sets for the 4d elements Y-Pd”, Peterson, K.A.;
Figgen, D.; Dolg, M.; Stoll, H., *Journal of Chemical Physics* 2007, 126, 124101.

"Gaussian basis sets for use in correlated molecular calculations.
VII. Valence and core-valence basis sets for Li, Na, Be, and Mg", Prascher, B.P.; Woon,
D.E.; Peterson, K.A.; Dunning, Jr., T.H.; Wilson, A.K *Theor. Chem. Acc.* **2011**, *128*, 69-82.

"Ab initio potential energy surface and vibrational-rotational
energy levels of X^{2}Σ^{+} CaOH", Koput, J.; Peterson,
K.A. *J. Phys. Chem. A* **2002**, *106*, 9595-9599.

Note: full series of sets for Ca, including
DK basis sets, are available at
http://tyr0.chem.wsu.edu/~kipeters/basissets/basis.html.

"Systematically convergent basis sets for explicitly correlated
wavefunctions: The atoms H, He, B–Ne, and Al–Ar", Peterson, K.A.;
Adler, T.B.; Werner, H.-J. *Journal of Chemical Physics* 2008, 128, 084102.

"Optimized auxiliary basis sets for explicitly correlated methods", Yousaf, K.E.; Peterson, K.A. *Journal of Chemical Physics* **2008**, *129*, 184108.

"Optimized complementary auxiliary basis sets for explicitly correlated methods: aug-cc-pVnZ orbital basis sets", Yousaf, K.E.; Peterson, K.A. *Chemical Physics Letters* **2009**, in press.