In their paper, Meloni and Gingerich reported on preliminary theoretical results by our group (Sec. 3 and Ref. 24). We want to add relevant information here (a) on the structure of the SnBi molecule, and (b) on our computed atomization energies for SnBi$_n$ ($n=1–3$).

Table I shows geometries optimized in density-functional calculations using the B3LYP functional2 together with our large-core relativistic effective-core potentials (ECPs)3 and corresponding $[4s4p3d2f]$ valence basis sets.1,3 It is to be noted that SnBi$_2$ has C_{2v} equilibrium structure which is lower in energy by \sim154 kJ/mol [as obtained in single-point coupled-cluster calculations with single and double excitations and perturbative account of triples (CCSD(T))] than the D_{oh} geometry reported by Meloni and Gingerich.

Also shown in Table I are atomization energies with respect to gradually improve on the accuracy of the large-core ECP B3LYP values, we first replaced the large-core ECPs5 and changed from B3LYP to CCSD6 and beyond.7 In a second step, we attempt to gradually improve on the accuracy of the large-core ECP B3LYP values, we first replaced the large-core ECPs5 and changed from B3LYP to CCSD6 and beyond.7

We want to add relevant information here (a) on the structure of the SnBi molecule, and (b) on our computed atomization energies for SnBi$_n$ ($n=1–3$).

Table I shows geometries optimized in density-functional calculations using the B3LYP functional2 together with our large-core relativistic effective-core potentials (ECPs)3 and corresponding $[4s4p3d2f]$ valence basis sets.1,3 It is to be noted that SnBi$_2$ has C_{2v} equilibrium structure which is lower in energy by \sim154 kJ/mol [as obtained in single-point coupled-cluster calculations with single and double excitations and perturbative account of triples (CCSD(T))] than the D_{oh} geometry reported by Meloni and Gingerich.

Also shown in Table I are atomization energies with respect to gradually improve on the accuracy of the large-core ECP B3LYP values, we first replaced the large-core ECPs5 and changed from B3LYP to CCSD6 and beyond.7

We want to add relevant information here (a) on the structure of the SnBi molecule, and (b) on our computed atomization energies for SnBi$_n$ ($n=1–3$).

Table I shows geometries optimized in density-functional calculations using the B3LYP functional2 together with our large-core relativistic effective-core potentials (ECPs)3 and corresponding $[4s4p3d2f]$ valence basis sets.1,3 It is to be noted that SnBi$_2$ has C_{2v} equilibrium structure which is lower in energy by \sim154 kJ/mol [as obtained in single-point coupled-cluster calculations with single and double excitations and perturbative account of triples (CCSD(T))] than the D_{oh} geometry reported by Meloni and Gingerich.

Also shown in Table I are atomization energies with respect to gradually improve on the accuracy of the large-core ECP B3LYP values, we first replaced the large-core ECPs5 and changed from B3LYP to CCSD6 and beyond.7 In a second step, we attempt to gradually improve on the accuracy of the large-core ECP B3LYP values, we first replaced the large-core ECPs5 and changed from B3LYP to CCSD6 and beyond.7

We want to add relevant information here (a) on the structure of the SnBi molecule, and (b) on our computed atomization energies for SnBi$_n$ ($n=1–3$).

Table I shows geometries optimized in density-functional calculations using the B3LYP functional2 together with our large-core relativistic effective-core potentials (ECPs)3 and corresponding $[4s4p3d2f]$ valence basis sets.1,3 It is to be noted that SnBi$_2$ has C_{2v} equilibrium structure which is lower in energy by \sim154 kJ/mol [as obtained in single-point coupled-cluster calculations with single and double excitations and perturbative account of triples (CCSD(T))] than the D_{oh} geometry reported by Meloni and Gingerich.

Also shown in Table I are atomization energies with respect to gradually improve on the accuracy of the large-core ECP B3LYP values, we first replaced the large-core ECPs5 and changed from B3LYP to CCSD6 and beyond.7 In a second step, we attempt to gradually improve on the accuracy of the large-core ECP B3LYP values, we first replaced the large-core ECPs5 and changed from B3LYP to CCSD6 and beyond.7

We want to add relevant information here (a) on the structure of the SnBi molecule, and (b) on our computed atomization energies for SnBi$_n$ ($n=1–3$).

Table I shows geometries optimized in density-functional calculations using the B3LYP functional2 together with our large-core relativistic effective-core potentials (ECPs)3 and corresponding $[4s4p3d2f]$ valence basis sets.1,3 It is to be noted that SnBi$_2$ has C_{2v} equilibrium structure which is lower in energy by \sim154 kJ/mol [as obtained in single-point coupled-cluster calculations with single and double excitations and perturbative account of triples (CCSD(T))] than the D_{oh} geometry reported by Meloni and Gingerich.

Also shown in Table I are atomization energies with respect to gradually improve on the accuracy of the large-core ECP B3LYP values, we first replaced the large-core ECPs5 and changed from B3LYP to CCSD6 and beyond.7 In a second step, we attempt to gradually improve on the accuracy of the large-core ECP B3LYP values, we first replaced the large-core ECPs5 and changed from B3LYP to CCSD6 and beyond.7

We want to add relevant information here (a) on the structure of the SnBi molecule, and (b) on our computed atomization energies for SnBi$_n$ ($n=1–3$).

Table I shows geometries optimized in density-functional calculations using the B3LYP functional2 together with our large-core relativistic effective-core potentials (ECPs)3 and corresponding $[4s4p3d2f]$ valence basis sets.1,3 It is to be noted that SnBi$_2$ has C_{2v} equilibrium structure which is lower in energy by \sim154 kJ/mol [as obtained in single-point coupled-cluster calculations with single and double excitations and perturbative account of triples (CCSD(T))] than the D_{oh} geometry reported by Meloni and Gingerich.

Also shown in Table I are atomization energies with respect to gradually improve on the accuracy of the large-core ECP B3LYP values, we first replaced the large-core ECPs5 and changed from B3LYP to CCSD6 and beyond.7 In a second step, we attempt to gradually improve on the accuracy of the large-core ECP B3LYP values, we first replaced the large-core ECPs5 and changed from B3LYP to CCSD6 and beyond.7

We want to add relevant information here (a) on the structure of the SnBi molecule, and (b) on our computed atomization energies for SnBi$_n$ ($n=1–3$).

Table I shows geometries optimized in density-functional calculations using the B3LYP functional2 together with our large-core relativistic effective-core potentials (ECPs)3 and corresponding $[4s4p3d2f]$ valence basis sets.1,3 It is to be noted that SnBi$_2$ has C_{2v} equilibrium structure which is lower in energy by \sim154 kJ/mol [as obtained in single-point coupled-cluster calculations with single and double excitations and perturbative account of triples (CCSD(T))] than the D_{oh} geometry reported by Meloni and Gingerich.

Also shown in Table I are atomization energies with respect to gradually improve on the accuracy of the large-core ECP B3LYP values, we first replaced the large-core ECPs5 and changed from B3LYP to CCSD6 and beyond.7 In a second step, we attempt to gradually improve on the accuracy of the large-core ECP B3LYP values, we first replaced the large-core ECPs5 and changed from B3LYP to CCSD6 and beyond.7

We want to add relevant information here (a) on the structure of the SnBi molecule, and (b) on our computed atomization energies for SnBi$_n$ ($n=1–3$).

Table I shows geometries optimized in density-functional calculations using the B3LYP functional2 together with our large-core relativistic effective-core potentials (ECPs)3 and corresponding $[4s4p3d2f]$ valence basis sets.1,3 It is to be noted that SnBi$_2$ has C_{2v} equilibrium structure which is lower in energy by \sim154 kJ/mol [as obtained in single-point coupled-cluster calculations with single and double excitations and perturbative account of triples (CCSD(T))] than the D_{oh} geometry reported by Meloni and Gingerich.

Also shown in Table I are atomization energies with respect to gradually improve on the accuracy of the large-core ECP B3LYP values, we first replaced the large-core ECPs5 and changed from B3LYP to CCSD6 and beyond.7 In a second step, we attempt to gradually improve on the accuracy of the large-core ECP B3LYP values, we first replaced the large-core ECPs5 and changed from B3LYP to CCSD6 and beyond.7
of this work have been done using the MOLPRO7 suite of programs.

The authors thank Professor H.-J. Werner (Stuttgart) for the possibility to use MOLPRO. Financial support of the DFG (for D.F.) is gratefully acknowledged.

4Electronic mail: stoll@theochem.uni-stuttgart.de

4K. A. Peterson (unpublished).