Chem 332: Problem Set #5

Due in class: Wednesday, Feb. 27th

(1) Consider the following 1-dimensional box that we discussed in class:

From lecture we know that in region (1) where \(V=0 \), \(\psi_1 = \lambda \sin(k_1 x) \) and in region (2) where \(V=V_0 \), \(\psi_2 = B e^{-\varepsilon x} \) (for \(E<V_0 \)), where \(k_1 = \sqrt{\frac{2mE}{\hbar^2}} \) and \(\varepsilon = \sqrt{\frac{2m(V_0-E)}{\hbar^2}} \). Apply the boundary conditions at \(x=L \), i.e., \(\psi_1(L) = \psi_2(L) \) and \(\psi_1'(L) = \psi_2'(L) \), and show this leads to the resulting quantization condition:

\[
\tan(k_1 L) + \frac{E}{\sqrt{V_0 - E}} = 0
\]

(2) Consider a simple harmonic oscillator with mass \(m \) and force constant \(k \), and a particle with the same mass in a one-dimensional box of length \(L \).

(a) What is the relationship between \(k \) and \(L \) such that the zero-point (ground state) energies of these two systems will be the same?

(b) If \(m \) is equal to the mass of a \(^1\)H atom, what is the value of \(k \) (in N/m) corresponding to \(L=1.4 \) nm?
(3) For a certain harmonic oscillator of mass 2.88×10^{-25} kg, the difference in adjacent energy levels is 4.82×10^{-21} J. Calculate the force constant of the oscillator.

(4) For the ground state of the 1-dimensional harmonic oscillator, determine the expectation values of the kinetic energy (T) and the potential energy (V) and in doing so verify that $\langle T \rangle = \langle V \rangle$.

(5) If a H$_2$ molecule rotates in the plane of a crystalline surface (in a chemisorption situation), it can be approximated as a two-dimensional rigid rotor. Calculate (in kJ/mol) the lowest energy rotational transition for such a system. Take the mass of the rotor to be 1/2 the mass of a hydrogen atom with a value of r equal to the bond length of H$_2$, 0.7416 Å.